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Abstract 

The LP recourse problem applies to two-stage optimization problems 

where uncertainty in resource availability of the second stage hinders informed decision 

making. The recourse function affords a way to compensate "later" for an error in 

prediction "now." The literature provides a rich body of work on the optimization of 

such problems, but little research has been accomplished regarding the characterization of 

the surface in the local region of optimality, in particular sensitivity analysis. A decision 

maker faced with considerations other than the modeled objective function must be 

presented with a way to estimate the impact of operating at non-optimal decision variable 

values. This work develops and demonstrates a technique for characterizing the surface 

using response surface methodology. Specifically, the flexibility and utility of RSM 

techniques applied to this class of problems is demonstrated, and a methodology for 

characterizing the surface in the local region using a low-order polynomial is developed. 
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1.0: Introduction 

This research extends the work of Lt. Col. T. Glenn Bailey's Doctoral 

Dissertation at the University of Texas, Austin (Bailey 1995). Bailey utilized response 

surface methodology (RSM) in characterizing the surface of several two-stage stochastic 

linear programming with recourse (2SSLP) problems as a post-optimization analysis 

process. The problems he examined included APL1P, CEP-1, PGP2,4-Term, and 20- 

Term. With the exception of 20-Term, the problems were small (15 decision variables or 

fewer), and the RSM analysis was predicated with knowledge gained during the 

optimization process. 

The goals of this work were twofold: First, to develop a structured methodology 

for the RSM-based analysis of this class of problems independent of any optimization 

knowledge, and second, to demonstrate the methodology on "large" problems (60 or 

more decision variables). The sponsor for the research was Lt. Col. Bailey, and the 

computer resources used were the property of the Air Force Institute of Technology. 

This work develops and demonstrates a structured methodology for designing and 

analyzing a low-order polynomial approximation for the 2SSLP family of problems. 

These problems are often difficult to analyze due to high dimensionality and a highly 

variant stochastic nature. A polynomial metamodel is useful for providing a decision 

maker with sensitivity analysis, and provides an easily computed estimate for changes in 

decision variable values. 

Chapter 2 introduces the problem with a rigorous mathematical definition, and 

provides a historical background. Chapter 3 develops the methodology for the work, and 
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Chapter 4 provides computational results for two problems considered. Chapter 5 

provides an overview of results, and directions for further research. 
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2.0: Two-Stage Stochastic Linear Programming with Recourse: 
A Characterization of Local Regions using Response Surface Methodology 

This thesis develops and implements a technique for characterizing the response 

surface of a two-stage stochastic linear programming (LP) with recourse problem using 

response surface methodology (RSM). Specifically, we demonstrate the flexibility and 

utility of RSM techniques applied to this class of problems, and develop a methodology 

for characterizing the surface in a local region using a low-order polynomial. 

The LP recourse problem applies to two-stage optimization problems where 

uncertainty in resource availability of the second stage hinders informed decision making. 

The recourse function affords a way to compensate "later" for an error in prediction 

"now" (Kail and Wallace, 1994).   The general form of the problem is 

z(*) = MiJc* + E[h(x,co,T)]] (1) 
X 

where 

h(x,Q),T) = Mindy (2) 
y 

3Wv = « + Tx,^>0 

The second-stage RHS vector co and matrix T can contain both stochastic and 

deterministic elements, and W is the matrix of second-stage technological coefficients 

(Bailey, Jensen and Morton 1996). The objective is to find x*, where Z(x*) = min Z(x). 

Dantzig first proposed the recourse problem as a way to extend linear 

programming beyond deterministic here-and-now decision problems, and generalized it 

to an m-stage problem (Dantzig 1955). Dantzig notes that only the first stage activities 

are determined, the later stage variables are random and dependent on the first stage 

variables, and that for any feasible choice of first-stage variables the following stages are 
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feasible. This last property is relatively complete recourse (Kail and Wallace 1994), an 

attribute we assume for two-stage problems. Wets (1966) proved that the feasible 

probability space of the problem is both convex and continuous, thus guaranteeing a 

unique optimal solution. 

The literature provides significant research in optimization of problems in this 

class. Ermoliev (1983,1988) explored gradient and quasi-gradient optimization methods, 

and introduced the use of the dual variables for gradient information. Higle and Sen 

(1991) employed decomposition methods for optimization, and Sen, Doverspike and 

Cosares (1994) used decomposition methods and validated the optimization with a 

simulation of the system studied. Bailey (1995) used the projective gradient among other 

nonlinear optimization techniques, and studied estimator variance reduction techniques. 

Morton and Wood (1997) demonstrated techniques for bounding the optimal solution of 

the problem. 

RSM integrates statistical experiment design, regression techniques, and 

elementary optimization methods to identify and fit an appropriate response surface 

which characterizes a system that is generally not fully understood. RSM seeks to 

identify the input variables which affect an output (or response) variable, and fit an 

appropriate response surface. The response surface used is generally a first- or second- 

order polynomial fitted using the least-squares approach (see Myers and Montgomery 

1995, Box and Draper 1987). 

Bailey (1995) utilized elements of RSM on the recourse problem by showing that 

designed experiments allow a systematic low-order polynomial characterization of the 

surface. He included sampling techniques to reduce the variance of the estimator of 
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E[h(x, co, T)], since excessive estimator variance often creates an indeterminate 

approximation of the known piecewise-convex surface. Bailey found the greatest 

variance reduction using Latin hypercube sampling (LHS), a method we employ in this 

paper (for the theoretical background of LHS, see Mckay et al 1979, and Mckay 1988). 
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3.0: Design Methodology 

Our approach begins with the assumption that x* is known, then continues with 

providing an appropriate experimental design to characterize the response surface in the 

optimal region. We empirically demonstrate the utility of this technique using the 

sequential design strategy depicted in Figure 3-1. 

1) Screen decision variables 
a) Design and fit Resolution IV design augmented with axial points 
b) Fit model of linear and pure quadratic terms 
c) Retain factors with predetermined significance level 

2) Choose experimental design for final model 
a) Central Composite Design 
b) Minimal Bias design 
c) Simplex Lattice if equality constraints are present 

3) Choose factor ranges and design center 
a) Design centering strategy is based on analysis objectives 
b) Factor ranges based on analysis objectives and a priori knowledge of problem 

characteristics 
4) Sample problem for experimental design, and fit model 
5) Model validation 

a) Statistical validation 
i)    Residual analysis 
ii)   ANOVA significance 
iii)  Lack of fit 

b) Sampling validation 
i)    Randomly sample design space 
ii)   Compare predicted values to actual observations 

6) Canonical analysis 
a) Analyze curvature of fitted model 
b) Compare to known characteristics of problem 

Figure 3-1: General Design Methodology. 

3.1: CCD and Minimal Bias Design 

Two sources of error in an empirical model are variance and bias, the latter 

referred to as systematic errors (Myers and Montgomery 1995). Bailey (1995) addresses 

several sampling methods to reduce model variance, but left model bias for later work. 

We construct and use a minimal bias design by adapting standard minimal-bias design 

techniques to the specific nature of the recourse problem. Bailey (1995) demonstrates a 
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Central Composite Design (CCD) to highlight the effectiveness of LHS in reducing the 

variance of the estimator of E[h(x, co, T)]. The CCD has the advantage of simple 

implementation while still providing a large amount of information about the surface, but 

will not protect against model bias. 

For initial screening purposes, a small composite design is constructed using a 

resolution IV foldover of a Plackett-Burman augmented with 2 axial points for each 

parameter. The Plackett-Burman portion is used to estimate the largest possible number 

of terms in the fewest runs. This design screens only linear and pure quadratic effects, 

and reflects the assumption that a significant parameter will have either a significant 

linear or quadratic term. Second-order interactive terms are not considered in accordance 

with this assumption. Terms higher than second order are not addressed, an assumption 

we make under the sparsity of effects principle (Myers and Montgomery 1995). 

Furthermore, as the feasible space of the recourse problem is convex our use of second- 

order terms is appropriate. 

The choice of range for each decision variable is motivated by several factors. 

First, it must be large enough to provide the decision maker a practical and meaningful 

choice. Second, the range must be feasible, e.g. a nonnegative decision variable with a 

center value of five cannot have a range of six. Third, empirical studies have shown a 

relatively high variance in the region of optimality (see Bailey 1995); therefore the range 

must induce a sufficiently large change in the response to differentiate the effect of a 

variable from the effect of random variance (both system variance and estimator 

variance). Finally and conversely, the range must be sufficiently small to allow an 

accurate second-order polynomial approximation of the surface in the local region of 
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optimality, the region of interest. For each problem, the same factor range is used for 

each factor in every design to allow for unbiased comparisons, e.g if one factor has a 

range of ± 5 all factors have a range of ± 5. 

Several options exist for modeling screened factors in the reduced factor design. 

First, these variables can be held to a coded value of zero. Second, we can group these 

variables, either randomly, or by an external criteria, and vary them as a group across the 

design. Third, we can allow each screened variable to independently vary across the 

design using an assigned distribution. The first and third alternatives provide insight into 

the accuracy of the individual screening, while the second option provides knowledge on 

the group effects. 

After screening, we determine the center of the design space, construct the design 

for the first-stage variables, and fit the polynomial approximation of the problem. The 

resulting metamodel can then predict and provide sensitivity analysis within the design 

space (see Box and Draper 1987, Neter et al. 1996). 

We adopt Box and Draper's (1987) minimum bias design, which is near-exact 

when used to minimize the bias of a second-order model of a cubic surface. Our design 

is adapted from a resolution V central composite design. We achieve minimum bias by 

scaling the design parameters such that the design moments, My, equal the region 

moments, fitj, (a single subscripted moment denotes a pure moment, a double subscript is 

an interactive moment). For the second-order design, with the origin defined as the 

design center, all region moments through order 5 are zero, with the exception of the 

following: 
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o 

jj,4i =jw(x)x*dx 
o 

fh2u =\w(x)xfx2jdx 
o 

where 

t \      X 
w(x) = 

\dx 
0 

(Box and Draper 1987, Myers and Montgomery 1995). 

Over a coded cuboidal design space the region of operability O is defined by the 

[-1,1] range of each coded variable. The weight function w(x) is 

-l-i   -i 

which is the inverse of the volume of the /-dimensional hypercube with side length 2. 

The limits of integration are constant and therefore interchangeable, resulting in the 

following values for the region moments (complete computations are shown in Appendix 

A) 

1 
M2

: 

~3 

y"4
: 

_ 1 
~5 

>"22 = 

_ 1 

"9 

The relevant design moments are represented as 
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1  N 

1   N 

1   N 

where JV= number of total design points. Equating the design moments and region 

moments results in: 

nfa
2 + 2a2 a2 =Nß 

«7a
4 + 2a4a4 = ^/5 

nfa
A = NI9 

nc + nf+2k = N 

where n/= the number of factorial design points, a = halflength of one edge of the 

minimal bias hypercube, k = number of axial points, a = multiplier for the axial points, 

and nc = number of center points (Box and Draper 1987). The design parameters are not 

always integer, but the general form of the design is robust to inexactness in the 

parameters (Myers and Montgomery 1995). The use of any balanced design for the 

± sign matrix guarantees that the odd moments through order 5 are zero. Axial points 

contribute to the estimation of the pure quadratic terms, and multiple center points 

facilitate estimation of pure error and lack of model fit. 

The center of the design space must be chosen to provide the richest sensitivity 

analysis possible. Therefore, we center the design in such a way that the extremes of the 

cuboidal region have a roughly equal Z(x) value, exploiting this "flatness" for our 

sensitivity analysis. We do not move more than 0.6 coded units away from the optimal 
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for any parameter, and only move parameters with statistical significance in order to 

retain the validity of the screening design. While a rectangular region (not restricted to 

cuboidal) could encompass an even "flatter" region, the coded parameter estimates would 

be more difficult to interpret. In all cases only uncoded parameter estimates are provided. 

We demonstrate three methods of centering the design. Our first method uses the 

gradient obtained at the optimal solution by projecting from the optimal solution out 

The gradient is calculated using the method shown by Ermoliev (1983,1988) where for 

the ith realization of co and T the negative gradient is 

-S7Zik=c + 7tikT 

and for xk the unbiased estimate of the negative gradient for N samples is 

1   N 

-vz = -—Yvz. 

Within the region of interest the upper and lower limits of the design variables are based 

on the gradient. This method requires sampling at only one point. 

Our second method of locating the design center uses the linear and quadratic 

estimates from the screening design. The polynomial approximation from the axial 

screening design is 

f(x) = ßo + y£j.ßxi + y£j.cuci2 

where 

ox 

for 

xk = ——, k— 1,2,...,i 
2ooc 
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thus yielding a center point for the design. 

The last centering methodology centers the design at the optimal solution. The 

first two strategies reflect an interest in a location least susceptible to variation in the 

parameters. The third strategy reflects an interest in characterizing the response to 

variation in the parameters in the immediate vicinity of the optimal solution. 

3.2: Modified Simplex-Lattice Koshal 

Two of the three problems we examine in this work contain equality constraints. The 

Simplex-Lattice (SL) design is applicable when equality constraints in the problem 

preclude a standard CCD (see Myers and Montgomery 1995). The CCD requires that 

each variable be capable of independent movement; however, an equality constraint 

requires any increase in one variable be appropriately offset by decreasing one or more 

associated variables. For the generalized equality constraint 

a {q, mj simplex-lattice, for modeling q parameters in a polynomial of degree m, is 

formed by equally spacing m+1 points on a simplex such that 

1   2 
x,=0,—,—,...,!, i = \,2,-.,q 

m m 

and then forming all ordered sets {xx, x2,..., xq) which satisfy the equality constraint 

(Myers and Montgomery, 1995). The simplex vertices 

(l,0,...,0), (0,l,...,0),...,(0,0,...,l) 
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estimate pure linear effects, and the remaining points estimate interactions. In general, a 

set with k nonzero elements estimates a k^-order interaction. For m=2, the fitted 

polynomial is 

Estimating a constant term in the SL requires the a priori removal of one term to allow 

estimation of the intercept. 

The simplex-lattice models the response for the entire range of the equality 

constraint, and we assume the response for the range of equality constraints in this class 

of problems to be too complex to model with acceptable accuracy using a single 

polynomial. As with the CCD and the minimal-bias model, we seek to model only the 

region about the optimal solution. We restrict the model to the region of interest using a 

set of deviation variables dt such that 

£4=0 
i=\ 

where d, denotes the deviation of JC, from the optimal solution. In this manner the design 

is restricted to the local region. Since no set (c,0,...,0),c * 0 can satisfy this constraint, 

no direct estimation of linear terms can be made. Additionally, any deviation variable 

equals the negative of the sum of the remaining variables, forcing a singularity in the 

regression matrix. We therefore augment the design with axial points at the extreme 

feasible values for each variable. Since estimating pure quadratic terms, or an intercept 

term, results in a singular regression matrix, the general model follows the standard SL 

form. The Koshal form of estimating interaction terms is used to limit the number of 

samples that must be made (See Myers and Montgomery 1995). 
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3.3: Validation: 

We evaluate the validity of our polynomial approximation in the following 

manner. We first apply the standard measures of adequacy (residual analysis, lack of fit, 

etc.) using the Shapiro-Wilk test (Neter et al. 1996) for normality, and the Levene test 

(Neter et al. 1996) for nonconstant variance. We then sample additional points within the 

design space, and compare the predicted values of the polynomial metamodel to the 

values provided by the original model of (1). 
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4.0: Problem Descriptions and Computational Results 

4.1: 20-Term Problem Description and Computational Results 

The first problem we address is 20-Term, a vehicle allocation problem between a 

central depot and 20 outlying terminals (hence the name 20-Term). 20-Term is ideal for 

our study as it is a large problem (63 decision variables and 40 random variables) and the 

optimum is known (Bailey 1995). The decision variables xj through x2i are trailers (600 

available), while x22 through x42 are tractors (400 available); together, these comprise the 

existing fleet, at a modeled cost of zero. A complete "vehicle" requires one tractor and 

one or two trailers. Variables x4i through x63 are rental units (one combined tractor- 

trailer) with a daily cost of 100, and constrained to a maximum of 10,000 rental units. 

These constraints are represented mathematically as 

£x; = 600 
j=i 

42 

I*, =400 
i=22 

63 

I 
i=43 

£JC, < 10,000 

and represent the first stage of the problem (corresponding to (1)). The T matrix 

allocates the decision variables among the central depot and outlying terminals without 

any stochastic representation, and is expressed mathematically as 

-^.-xy+42=0,y = l,2,...,21 

-Xj-xJ+21 =0,7 = 22,23,.. .,42 
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The two equality constraints lack the necessary degrees of freedom to construct a 

Central Composite Design (CCD). Consequently, x, and x22 are used as dependent 

variables such that 

JC,=600-^JC,. 

4Z 

21 

£ 
j=2 

42 

z 
i=23 

Removing JC; and x22 from consideration projects the modeled surface onto the surface 

representing the outlying terminals. The forty independent random variates represent 

supply and demand at each of the outlying terminals; the lack of supply and demand 

variables for the central depot support the use of the central location as a staging point for 

the outlying terminals. 

At the optimal solution there are thirty-eight nonzero parameters (Bailey 1995), 

including X] and x22. All parameters with a zero value are a priori removed to allow 

movement in both directions, and a parameter range of five is used with 200 replications 

at each point to estimate the value. The parameter screening reduces the number of 

variables under consideration to thirteen (screening design results are in Appendix D). 

The optimal value of x25 is too small to allow a spherical region CCD, so the space 

is modeled as a cuboidal region (face centered CCD). A 2l
v

3"5 design base gives 256 

factorial runs, 26 axial points, and 42 center points for a total of #=324 runs. The 

relatively large number of center replications stabilizes estimator variance and allows 

good estimation of lack of fit. We demonstrate all three centering strategies with the 

CCD. Summary statistics for the models are shown in Table 4-1. 
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Table 4-1: 20-Term CCD Summary Statistics 
Centering Strategy     Optimal    Quadratic Gradient 
Rsquare 
Rsquare Adj 
RMSE 

0.997 
0.996 

399.147 

0.991 
0.990 

224.154 

0.997 
0.996 

363.333 
ANOVA Significance 
Lack of Fit 

<001 
<001 

<001 
0.601 

<001 
<001 

Residual Normality 
Residual Variance 

0.770 
0.062 

0.299 
0.422 

0.893 
0.094 

Max Response 
Min Response 
Std Dev(Response) 

281570 
254657 

6230.107 

262869 
254684 

2220.225 

280543 
254778 

6028.360 

The CCD summary statistics suggest a good approximation, with normally 

distributed, constant variance residuals. The optimal centered model indicates no lack- 

of-fit, and model significance is strong. The quadratic-centered model has a high lack-of- 

fit; the extremes of this design are well outside the range of the initial screening design, 

and screened variables could possibly be significant in the new region. However, good 

ANOVA model significance coupled with good residual analysis allows the analysis to 

proceed. The RMSE and the standard deviation of the response indicate the quadratic 

centering does produce the desired effect - a near-optimal location least susceptible to 

change in the parameters. The gradient centering provides the best all-around model, 

with the highest R2 and a 10% reduction in RMSE over the optimal centered model, as 

well as good residual analysis and no indication of lack of fit. 

A canonical analysis of the optimal-centered 13-variable CCD provides 

sensitivity analysis for the fitted model (see Myers and Montgomery 1995, Box and 

Draper 1987). The cuboidal design is not rotatable, therefore the standard errors for the 

eigenvalues of the second-order model cannot be extracted directly from the regression. 

Instead, we apply the Bisgaard and Ankenman (1998) approach of rotating the decision 

variable values using the matrix of eigenvectors associated with the original matrix of 
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second-order terms, and fitting the model using the rotated data. In this model, the 

eigenvalues are the coefficients of the pure quadratic terms, and the standard error of the 

coefficients are used as the standard error of the eigenvalues. Table 4-2 contains the 

results of the canonical analysis, and Table 4-3 contains the 95% confidence intervals for 

the eigenvalues. The eigenvector corresponding to the largest eigenvalue represents the 

maxima ridge for the system, while the eigenvector corresponding to the smallest 

eigenvalue represents the minima ridge. There are no zero eigenvalues, indicating that 

there is no pure ridge system. 

Table 4-2: 20-Term Maximal and Minimal Ridge Eigenvectors 
Eigenvalue 62.449 7.875 
X4 0.514 -0.003 

X11 0.217 0.042 
X23 0.012 0.000 
X24 -0.059 -0.002 
X25 -0.597 0.000 
X31 -0.192 -0.059 
X32 -0.315 0.722 
X33 -0.317 -0.686 
X34 -0.225 0.039 
X36 -0.026 -0.021 
X39 0.185 0.000 
X43 -0.082 0.012 
X62 0.034 0.005 

Table 4-3: Eigenvalues of 20-Term CCD 
Eigenvalue Std Error Lower 95% Upper 95% 

62.449 1.054 60.382 64.515 
61.669 1.046 59.619 63.718 
54.470 1.910 50.727 58.213 
47.203 0.975 45.292 49.113 
40.490 1.597 37.359 43.621 
37.399 1.011 35.418 39.380 
36.266 1.050 34.209 38.323 
35.490 3.995 27.660 43.319 
34.460 1.078 32.348 36.572 
26.075 2.854 20.480 31.670 
23.501 1.322 20.909 26.092 
18.094 2.944 12.323 23.865 
7.875 1.282 5.362 10.388 
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Figure 4-1 is a graph of the observed response along the minimal and maximal 

eigenvectors. The region of interest is dominated by second-order terms, and Figure 4-1 

demonstrates the accuracy of the second-order ridge analysis, with the maximal ridge 

observations dominating the minimal ridge observations at each point. 

266000 

-Minima 
-Maxima 

254000 
4 6 8 10 

Distance from Design Center 

14 

Figure 4-1: Observations along Maxima and Minima Ridge 
Eigenvectors (20-Term) 

The minimal bias model is constructed in much the same manner as the CCD. 

For the 256 factorial point CCD base, the design moment equations are satisfied with 

a=0.6, a=3, and 20 center runs, centered at the optimal solution. Our range of interest is 

±5 units for each variable; unfortunately, the optimal value of x2s = 6 is too small to 

accommodate the range of movement required for the axial points. Consequently, x25 is 

dropped from the minimal bias portion of experimentation. Table 4-4 lists the summary 
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statistics for the regression, and Figure 4-2 is a graph of the predicted response and the 

observed response. 

Table 4-4: 20-Term Minimal Bias Summary Statistics 
Centering Strategy           Optimal 
Rsquare 
Rsquare Adj 
RMSE 

0.946 
0.939 

503.167 
ANOVA Significance 
Lack of Fit 

<0001 
<0001 

Residual Normality 
Residual Variance 

0 
<0001 

Max Response 
Min Response 
Std Dev(Response) 

264468.8 
254762.1 
2036.162 

T3 
U 
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Figure 4-2: Minimal Bias Response by Predicted Response 

The minimal bias model has a slightly worse R2 than the CCD, and a root mean 

squared error (RMSE) 20% higher than the CCD. The deletion of x25 appears to have had 

a noticeable effect on the regression. The residuals also violate the model requirement of 

normal distribution. This is seen in Figure 4-2, where the predicted values and the 
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observed values in the lower portion of the graph are not on the line, indicating a region 

of poor prediction and high residual values. If there exists a set of factor levels which 

produce poor estimation and a peak in residual values, this could possibly be remedied by 

regressing using weighted least-squares instead of the standard least-squares procedure 

used (Neter et al. 1996). We instead recommend the use of the CCD as it allows the use 

of all significant variables. 

20-Term has two equality constraints and one inequality constraint, each with 

mutually exclusive parameters. This allows blocking the problem into three parameter 

groupings. We apply the modified SL to the first constraint, holding x22 through x63 at 

their optimal solution values and modeling all interactions within the xj through x2i 

block. As with the CCD, a range of ± 5 for each nonzero variable is modeled, with all 

zero valued parameters excluded. The remaining sixteen parameters are modeled with 

240 two-way interactive samples (two for each interaction), 16 axial points, 32 6-way 

interactive points to allow for estimation of error, and 12 center points to allow an 

estimate of lack of fit. Summary statistics are in Table 4-5, and the deviation matrix is in 

appendix P. Figure 4-3 is error plotted against response for the non-axial portion of the 

design. 

Table 4-5: 20-Term MSLK Summary Statistics 
Centering Strategy Optimal 
Rsquare 0.976 
RSquare Adj 0.974 
RMSE 17417.16 
ANOVA Significance <0001 
Lack of Fit <0001 
Residual Normality <0001 

4-7 



50000 - 

-»* » «- 

254500    255000    255500    256000    256500    257000    257500    258000    258500    259000 

Response 

Figure 4-3: 20-Term MSLK Error by Response 

Results for this design are not promising. RMSE is high, the residual analysis 

shows a lack of normality, and nonconstant variance is visually apparent in Figure 4-3. 

The axial points are not in the local region, and appear to reduce the effectiveness of the 

model in the region of optimality. A possible remedy would be to regress using weighted 

least-squares, minimizing the impact of the axial points. No further analysis of this 

design will be pursued. 

The CCD family of designs produces consistently good models. For the optimal- 

centered design, the CCD is the obvious choice, and to provide a location least sensitive 

to parameter changes, we recommend using either the gradient-centered method, or the 

quadratic-centering method with a screening design at the design center to choose 

variables which will improve lack of fit. 
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As a final validation step, we generate 5,000 random points within the design 

space, and allow factors with an optimal value of zero to vary uniformly from zero to 

two, while all non-zero variables range uniformly ± 5 from their optimal value. 

Predicted values are computed and the percentage errors plotted against the distance from 

the design center in Figure 4-4. The worst error was less than 8%, with an average error 

of 2.5%. 

6.000% 

30 35 40 45 
Distance from Design Center 

Figure 4-4: 20-Term Validation Error by Distance (Uncoded Space) 

4.2: SSN Problem Descriptions and Computational Results 

The next problem analyzed is SSN, a multi-commodity network flow model with 

31 nodes, 89 links (decision variables), 86 demand pairs (stochastic), and 706 routes. A 

route is comprised of no more than 3 links. Each link may be assigned a capacity, with 

no more than 1,008 total units of capacity. This constraint is represented mathematically 

as 
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89 

I f>,.< 1,008 

and is the only decision variable constraint. The literature provides neither a description 

of the acronym SSN nor units for the objective function; neither are required for the 

analysis. 

At the optimal solution the constraint is active, a situation referred to as a binding 

multi-component constraint (Myers and Montgomery 1995). One possible design choice 

for this type of region is a computer-generated design (Myers and Montgomery 1995). 

We instead relax the constraint and center a CCD at the optimal solution, and impose the 

constraint on the final model. 

Ten replications of 400 runs each at the optimal solution provides an estimate of 

variance (approximately 1.9), and an estimate of the optimal solution (approximately 

10.04). The high variance prompts the use of 800 replications at each point. An initial 

screening design using a cuboidal region with decision variable range size of five (all 

factors with a value less than five are a priori removed) provided poor results - an 

indefinite fit (indicated by the presence of both positive and negative eigenvalues) in a 

known convex space (Wets 1966). The summary statistics for this design are in table 4- 

6. 

Table 4-6: Summary Statistics for SS1S 
Centering Strategy 
RSquare 
RSquare Adj 
RMSE 
Max Eigenvalue 
Min Eigenvalue 

Cuboidal Screening Design 
Optimal 
0.872204 
0.760947 
0.942029 
1.194027 
-0.97663 
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The range is not large enough to differentiate between random variation and variation 

induced by decision variable changes, and indicates the need for a larger decision 

variable range. The use of a cuboidal range must be abandoned and each factor range is 

determined as 

r,=min(10,jc,ifllp) 

where r, is the factor range for the ith variable and xii0p is the optimal solution value for 

the ith variable. All variables with a value of zero are not considered. 

At the optimal solution there are fifty-five nonzero parameters (Morton 1999). 

The factor screening indicates that including thirteen variables results in an acceptably 

high R2 of 0.87, while the use of all fifty-five results in only a small increase in R2 to 

0.95. Forty-one variables are statistically significant in the region of interest, and a 

complete model of the region would require all forty-one; computational considerations 

for this work restrict the analysis to fewer factors. Consequently thirteen factors are 

chosen using a stepwise screening procedure (summary statistics and parameter estimates 

for the design are in Appendix J). A 2y~5 design base is used, with 256 factorial runs, 26 

axial points, and 18 center points for a total of 7V=300 runs. As with 20-Term, the 

relatively large number of center replications stabilizes estimator variance and allows 

good estimation of lack of fit. The alternate centering strategies push the design center 

out of the feasible region and are not used in this problem. 

The CCD summary statistics in Table 4-7 suggest a good approximation, with 

normally distributed, constant variance residuals. There is evidence to suggest lack of fit 

due to the high variance of the system, but the R2 of 0.896, good ANOVA model 

significance, and excellent residual analysis allows the model analysis to proceed. 
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Table 4-7: SSN CCD Summary Statistics 
Centering Strategy Optimal 
Rsquare 0.896 
Rsquare Adj 0.884 
RMSE 0.886 
ANOVA Significance <0001 
Lack of Fit 0.389 
Residual Normality 0.514 
Residual Variance 0.560 

As with 20-Term, canonical analysis of the CCD provides sensitivity analysis for 

the fitted model. The design is not rotatable, and the Bisgaard and Ankenman (1998) 

method of estimating the standard errors of the eigenvalues is used here as well. Table 

4-8 contains the results of the canonical analysis, and Table 4-9 contains the 95% 

confidence intervals for the eigenvalues. For brevity only the maximal and minimal ridge 

eigenvectors are included. Eight of the thirteen eigenvalues cannot be distinguished from 

zero at the 95 % confidence level, indicating pure second-order ridge systems within the 

design space. The eigenvalues are all near zero, indicating very low curvature within the 

design region, and sampling along the minimal and maximal ridge eigenvectors confirms 

this. Figure 4-5 is a plot of the observations along the maximal and minimal 

eigenvectors; the observations along the distinct eigenvectors yield indistinct results, 

affirming that a first-order analysis is sufficient for the region. 

4-12 



Table 4-8: SSN Maxima and Mini mal Ridge 
Eigenvalue 0.011 -0.002 

X12 -0.477 0.002 
X17 0.058 0.036 
X19 0.000 0.523 
X21 0.047 0.000 
X24 -0.014 0.006 
X30 -0.002 -0.702 
X33 0.393 -0.018 
X40 0.326 0.005 
X41 -0.112 -0.005 
X43 -0.226 0.008 
X53 -0.012 -0.482 
X60 0.038 -0.005 
X64 -0.664 0.003 

Table 4-9: Eigenvalues of SSN CCD 
Eigenvalue Std Error Lower 95% Upper 95% 

0.011 0.002 0.008 0.014 
0.008 0.002 0.005 0.011 
0.003 0.001 0.002 0.005 
0.003 0.001 0.001 0.005 
0.003 0.001 0.001 0.004 
0.001 0.002 -0.002 0.005 
0.001 0.001 -0.001 0.002 
0.001 0.001 -0.001 0.003 
0.001 0.002 -0.003 0.004 
0.000 0.001 -0.001 0.002 
0.000 0.002 -0.004 0.003 
0.000 0.001 -0.002 0.002 
-0.002 0.001 -0.003 0.000 
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Figure 4-5: Observations along Maxima and Minima 
Ridge Eigenvectors (SSN) 

The first-order direction of greatest change, maxima, is represented by the vector 

of linear estimates (Myers and Montgomery 1995); any orthogonal vector is the direction 

of least change, minima, (for L the vector of linear estimates, P an alternative direction 

vector, LP=0 is the smallest magnitude of change possible; therefore P orthogonal to L is 

a direction of least change). Table 4-10 contains the maxima vector and a minima vector 

(other minima vectors exist; any vector orthogonal to the maxima is a minima vector), 

and Figure 4-6 is a plot of the observations along the maxima and minima vectors. 

4-14 



Table 4-10: Maxima and Minima First-Order Vectors for SSN CCD 
Variable Maxima Minima 
X12 0.000 0.000 
X17 -0.355 0.500 
X19 -0.106 -0.500 
X21 -0.539 -0.500 
X24 -0.078 0.500 
X30 -0.059 0.500 
X33 -0.196 0.500 
X40 -0.267 -0.500 
X41 -0.106 0.500 
X43 -0.131 0.500 
X53 -0.036 -0.500 
X60 -0.140 0.500 
X64 -0.114 -0.500 

3 6 9 12 

Distance From Design Center 

■M axim a 
-Minima 

Figure 4-6: Observations along First-Order Maxima and Minima (SSN) 

Figure 4-6 shows the accuracy of the direction vectors obtained from the CCD, 

and also demonstrates the highly variant nature of SSN. There is virtually no change in 

the minima direction, while the observations along the maxima show a clear rising 

tendency. 
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The use of only a small subset of the statistically significant parameters for the 

CCD preclude the type of whole-model random prediction validation used for 20-Term. 

4.3: Empirical Conclusions 

The empirical models of 20-Term and SSN provide an easily computable estimate 

for a decision maker. The methodology presented in Chapter 2 is validated by the 

accuracy of the models, in particular the sensitivity analysis. 
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5.0: Contributions and Future Research 

This research extends the methodology for characterizing local regions of the 

two-stage stochastic linear programming with recourse family of problems, using 

empirical modeling techniques. We provide a framework to accurately characterize the 

surface with a low-order polynomial and provide sensitivity analysis in the optimal 

region. We also demonstrate the utility of response surface methodology for this class of 

problems, and show the flexibility of RSM through the use of several different techniques 

to adapt to specific problems. 

While no alphabet-optimal designs were used in this work, the literature suggests 

the G and Q-optimal family of designs may prove useful in the characterization of this 

class of problems, since these designs specifically seek to stabilize prediction variance 

within the design region. The binding multi-component constraint in SSN could be 

modeled using a computer-generated design to produce a more accurate characterization 

of the optimal region than the CCD. Our approach of relaxing the binding constraint is 

not always a realistic possibility, and, in the case of a binding, non-releasable constraint, 

a computer-generated design could provide the necessary structure to characterize the 

surface. The nature of the specific problems studied led to the use of cuboidal design 

regions. A spherical design region is generally more desirable, and for problems where 

this is feasible, will most likely lead to more accurate prediction within the design region. 

In particular, a spherical design would allow the use of a minimum-bias design with all 

significant variables. An exploration of the minimum-bias design on a problem with the 

necessary freedom of range is valuable in minimizing error within the design region. 
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High variance hindered the analysis of SSN. Total variance is the sum of 

estimator variance and system variance, and although nothing can be done to minimize 

system variance, the total variance can be minimized through the use of estimator 

variance reduction techniques. While Latin hypercube sampling is used throughout this 

paper for this purpose, other possible techniques include antithetic variates and control 

variates. Furthermore, LHS requires independent variables, which are assumed to be 

present for each problem studied; however, for correlated variables LHS may not prove 

suitable. A comparative study of several different variance reduction techniques under 

different correlation assumptions should be undertaken on high-variance problems as 

SSN. 

Finally, statistical significance of variables was a key factor in screening factors 

within the design range. The relatively few number of significant variables in 20-Term 

led to the highly accurate characterization of the surface with a small polynomial, but 

with SSN the number of variables had to be restricted due to the large number of 

variables that were statistically significant. The use of a small-composite design could 

possibly result in a higher-accuracy design by allowing the efficient modeling of more 

factors with a manageable number of runs. 
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APPENDIX A: Terminology. 

We use the following concepts and terminology throughout this paper. 

Coded Variable: A variable transformed by scaling the minimum and maximum 

to -1 and 1, respectively (see Myers and Montgomery 1995, Box and Draper 

1987). See Uncoded Variable. 

Cuboidal region: A special case of the rectangular region where the range of 

each parameter is equal. See Rectangular Region. 

Deterministic Model: A model whose inputs are known with certainty (Banks et 

al. 1996). Contrast with Stochastic model. 

Extreme Point: Given a function f(x) and a point x* in the domain of f(x), any 

s>0, and an s, if V s>0 and all s such that \\s\\ < e, either: 

1. /(/+*)</(/) 

2. /•(/+*)>/(/) 

Then x* is an extreme point off. In case (1) above, x* is a local maximum, and 

in case (2) x* is a local minimum (Schmidt and Davis 1981). 

Global Maximum: Given a set of all local maximum points (xi, x2, x3,..., x;) for 

a function f, the global maximum xh defined to be xh = max[xi, x2, x3,..., Xj] 

(Schmidt and Davis 1981). See Extreme Point. 

Global Minimum: Given a set of all local minimum points (xi, x2, x3,..., x;) for 

a function f, the global minimum xh defined to be xh = minfxi, x2, x3,..., x,] 

(Schmidt and Davis 1981). See Extreme Point. 

A-l 



Karush-Kuhn-Tucker (KKT) conditions: A set of conditions necessary for a 

point to be an optimum (Bazaraa et al. 1990). KKT conditions are both necessary 

and sufficient for constrained optimization problems (Schmidt and Davis 1981). 

Random Number Generator: An algorithm for providing pseudo-random 

numbers. This paper uses a Linear Congruential Generator, where Z ;=(aZi.i+ 

Qmodulo m (Law and Kelton, 1991). 

Rectangular Region: A region where the range of each parameter is independent 

of all other parameters. See Cuboidal Region. 

Rotatable Design: A design in which the variance of the estimator is a function 

only of the distance from the design center (Box and Draper 1987). 

Stationary Point: See Extreme Point. An alternate definition is a point x* where 

the gradient of the function is zero (Winston 1994). 

Stochastic model: A model where at least one input is a random variable (Banks 

etal. 12). Contrast with Deterministic model. 

Uncoded Variable: A variable represented in original units. See Coded 

Variable. 
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APPENDIX B: Moment Computations. 
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APPENDIX C: Parabolic Design Centering Computations. 

so 

ax, 

_(/(x)) = ßt+ 2aixi = 0   (setting partial derivative with respect to JQ to zero) 
3x, 

ßi+lcctx, = 0 

2a,x, = -A 

2of; 
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APPENDIX D: 20-Term Screening Design Results. 

Response: Response 
Summary of Fit 

RSquare 0.912907 
RSquare Adj 0.900926 
Root Mean Square Error 2052.249 
Mean of Response 275662.7 
Observations (or Sum Wgts) 216 

Lack of Fit 
Source DF Sum of Sq uares Mean Square F Ratio 

Lack of Fit 98 762895824 7784651 21.3888 

Pure Error 91 33120257 363959 Prob>F 

Total Error 189 796016081 

Parameter Estimates 

<0001 

Term Estimate Std Error t Ratio Prob>|t| 

Intercept 271170.32 174.2928 1555.8 0.0000 

4 -623.3938 237.4169 -2.63 0.0094 

4*4 1867.2617 1312.017 1.42 0.1563 

11 -423.4396 237.4169 -1.78 0.0761 

11*11 1592.502 1312.017 1.21 0.2263 
23 -1043.801 237.4169 -4.40 <0001 

23*23 1562.801 1312.017 1.19 0.2351 
24 -547.6445 237.4169 -2.31 0.0222 
24*24 1056.07 1312.017 0.80 0.4219 
25 -1249.936 237.4169 -5.26 <0001 
25*25 1962.9422 1312.017 1.50 0.1363 

31 ^25.3867 237.4169 -1.79 0.0748 

31*31 1132.5585 1312.017 0.86 0.3891 
32 -660.2916 237.4169 -2.78 0.0060 

32*32 879.01807 1312.017 0.67 0.5037 
33 -764.1467 237.4169 -3.22 0.0015 
33*33 787.20664 1312.017 0.60 0.5492 
34 -611.2801 237.4169 -2.57 0.0108 

34*34 1423.7077 1312.017 1.09 0.2792 

36 -855.3613 237.4169 -3.60 0.0004 
36*36 1427.8315 1312.017 1.09 0.2779 

39 -509.739 237.4169 -2.15 0.0331 
39*39 1255.0798 1312.017 0.96 0.3400 
43 646.30283 237.4169 2.72 0.0071 

43*43 284.916 1312.017 0.22 0.8283 
62 425.7261 237.4169 1.79 0.0745 
62*62 -2245.31 1312.017 -1.71 0.0887 

D-l 



APPENDIX E: 20-Term CCD Design Results. 

Response: Response 
Summary of Fit 

RSquare 0.996531 
RSquare Adj 0.995895 
Root Mean Square Error 399.1465 
Mean of Response 264883 
Observations (or Sum Wgts) 324 

Lack of Fit 
Source DF Sum of Squares Mean Square F Ratio 
Lack of Fit 232 41139976 177327 3.0888 
Pure Error 41 2353825 57410 Prob>F 
Total Error 273 43493801 <.0001 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 
Model 50 1.24935e10 2.4987e8 1568.374 
Error 273 43493801.2 159318 Prob>F 
C Total 323 1.2537e+10 

Parameter Estimates 

<0001 

Term Estimate Std Error t Ratio Prob>|t| 
Intercept 1503610.2 1591824 0.94 0.3457 
X11*X23 2.6107684 0.997866 2.62 0.0094 
X11*X24 3.37054 0.997866 3.38 0.0008 
X23*X24 25.832694 0.997866 25.89 <.0001 
X24*X25 7.0478868 0.997866 7.06 <0001 
X11*X31 -2.779321 0.997866 -2.79 0.0057 
X11*X32 -9.124528 0.997866 -9.14 <.0001 
X31*X32 18.751966 0.997866 18.79 <0001 
X11*X33 -6.008188 0.997866 -6.02 <0001 
X31*X33 16.026274 0.997866 16.06 <0001 
X32*X33 41.729022 0.997866 41.82 <.0001 
X11*X34 -1.975712 0.997866 -1.98 0.0487 
X31*X34 4.223032 0.997866 4.23 <.0001 
X32*X34 11.815232 0.997866 11.84 <0001 
X33*X34 15.597613 0.997866 15.63 <0001 
X34*X36 2.4440648 0.997866 2.45 0.0149 
X25*X39 -14.03803 0.997866 -14.07 <0001 
X11*X43 -6.974411 0.997866 -6.99 <.0001 
X4*X11 8.8046915 0.997866 8.82 <.0001 
X4*X23 2.9062381 0.997866 2.91 0.0039 
X4*X25 -15.72449 0.997866 -15.76 <0001 
X4 990.65336 489.5964 2.02 0.0440 
X4*X4 64.08403 10.84804 5.91 <0001 
X11 144.56282 832.3194 0.17 0.8622 
X11*X11 38.240406 10.84804 3.53 0.0005 
X23 -2377.273 285.937 -8.31 <.0001 
X23*X23 44.455534 10.84804 4.10 <.0001 
X24 -2160.368 737.1017 -2.93 0.0037 
X24*X24 36.71196 10.84804 3.38 0.0008 
X25 -888.8892 135.2441 -6.57 <.0001 
X25*X25 68.839778 10.84804 6.35 <.0001 
X31 -1482.89 307.4997 -4.82 <0001 
X31*X31 22.03542 10.84804 2.03 0.0432 
X32 -2014.012 393.7514 -5.11 <0001 
X32*X32 19.13702 10.84804 1.76 0.0788 
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X33 
X33*X33 
X34 
X34*X34 
X36 
X36*X36 
X39 
X39*X39 
X62 
X62*X62 
X4*X43 
X43 
X43*X43 
X43*X62 
X32*X36 
X24*X43 

-2206.076 436.3253 -5.06 <.0001 
21.069174 10.84804 1.94 0.0531 
-2459.035 440.3417 -5.58 <.0001 
43.18785 10.84804 3.98 <.0001 
-2015.673 413.1288 -4.88 <.0001 
44.784666 10.84804 4.13 <0001 
-1548.626 368.9154 -4.20 <.0001 
42.191168 10.84804 3.89 0.0001 
6933.9054 4386.128 1.58 0.1151 
31.328842 10.84804 2.89 0.0042 
-8.20122 0.997866 -8.22 <.0001 

-6144.206 8316.241 -0.74 0.4607 
9.3969059 10.84806 0.87 0.3871 
-22.96189 11.33358 -2.03 0.0437 
1.7881153 0.997866 1.79 0.0743 
-1.879555 0.997866 -1.88 0.0607 



APPENDIX F: 20-Term Minimal Bias Design Results. 

Response: Response 
Summary of Fit 

RSquare 0.946082 

RSquare Adj 0.938934 
Root Mean Square Error 503.1673 
Mean of Response 259413.9 
Observations (or Sum Wgts) 300 

Lack of Fit 
Source DF Sum of Squares Mean Square F Ratio 

Lack of Fit 245 65842343 268744 5.1243 

Pure Error 19 996462 52445 Prob>F 

Total Error 264 66838806 <.0001 

MaxRSq 
0.9992 

Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t| 

Intercept 3028128.5 638197.3 4.74 <.0001 

X4*X11 10.782175 3.494217 3.09 0.0022 

X23*X24 20.892113 3.494217 5.98 <.0001 

X11*X32 -12.25127 3.494217 -3.51 0.0005 

X31*X32 13.247014 3.494217 3.79 0.0002 

X31*X33 9.4100612 3.494217 2.69 0.0075 

X32*X33 31.499883 3.494217 9.01 <0001 

X32*X34 12.065418 3.494217 3.45 0.0006 

X33*X34 10.777376 3.494217 3.08 0.0023 

X4*X43 -7.401196 3.494217 -2.12 0.0351 

X11*X43 -8.71441 3.494217 -2.49 0.0132 

X34*X43 -10.41168 3.494217 -2.98 0.0032 

X4 754.70084 1349.064 0.56 0.5763 

X4*X4 58.513029 4.337515 13.49 <.0001 

X11 224.19558 1372.754 0.16 0.8704 

X11*X11 46.270288 4.337515 10.67 <.0001 

X23 -2397.806 151.9513 -15.78 <.0001 

X23*X23 59.700475 4.337515 13.76 <.0001 

X24 -2797.826 255.8447 -10.94 <0001 
X24*X24 41.13873 4.337515 9.48 <.0001 

X31 -1760.195 153.924 -11.44 <.0001 

X31*X31 42.366866 4.337515 9.77 <.0001 

X32 -2141.127 225.3012 -9.50 <.0001 

X32*X32 37.587771 4.337515 8.67 <.0001 

X33 -2691.638 203.5631 -13.22 <.0001 

X33*X33 40.46728 4.337515 9.33 <.0001 

X34 1087.8992 1352.794 0.80 0.4220 
X34*X34 56.07097 4.337515 12.93 <.0001 

X36 -2218.545 165.1367 -13.43 <.0001 

X36*X36 53.186959 4.337515 12.26 <.0001 

X39 -2089.885 147.8232 -14.14 <.0001 

X39*X39 57.564489 4.337515 13.27 <.0001 

X43 -13557.83 3325.77 -4.08 <.0001 

X43*X43 18.458021 4.337515 4.26 <.0001 

X62 -1634.208 251.7799 -6.49 <0001 
X62*X62 27.616426 4.337515 6.37 <.0001 
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APPENDIX G: 20-Term Gradient Centered CCD Results. 

Response: Response 
Summary of Fit 

RSquare 0.99693 
RSquare Adj 0.996367 
Root Mean Square Error 363.3332 
Mean of Response 264537.2 
Observations (or Sum Wgts) 324 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 
Model 50 1.17021e10 2.3404e8 1772.905 
Error 273 36038998.5 132011 Prob>F 
C Total 323 1.17382e10 

Lack of Fit 

0.0000 

Source DF Sum of Squares Mean Square F Ratio 
Lack of Fit 232 34194797 147391 3.2768 
Pure Error 41 1844201 44981 Prob>F 
Total Error 273 36038998 <.0001 
Max RSq 
0.9998 

Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t| 
Intercept 1336418.5 1471973 0.91 0.3647 
X11*X23 1.7409361 0.908333 1.92 0.0563 
X11*X24 2.9920102 0.908333 3.29 0.0011 
X23*X24 25.840941 0.908333 28.45 <.0001 
X24*X25 4.5274713 0.908333 4.98 <.0001 
X11*X31 -3.444468 0.908333 -3.79 0.0002 
X11*X32 -8.610768 0.908333 -9.48 <.0001 
X31*X32 18.925932 0.908333 20.84 <.0001 
X11*X33 -4.835923 0.908333 -5.32 <.0001 
X31*X33 15.411596 0.908333 16.97 <.0001 
X32*X33 41.627596 0.908333 45.83 <.0001 
X11*X34 -2.273658 0.908333 -2.50 0.0129 
X31*X34 3.2788931 0.908333 3.61 0.0004 
X32*X34 10.595318 0.908333 11.66 <.0001 
X33*X34 12.513428 0.908333 13.78 <.0001 
X34*X36 2.4008147 0.908333 2.64 0.0087 
X25*X39 -14.62376 0.908333 -16.10 <.0001 
X11*X43 -7.266431 0.908333 -8.00 <.0001 
X4*X11 8.9549337 0.908333 9.86 <.0001 
X4*X23 1.4941426 0.908333 1.64 0.1011 
X4*X25 -14.68016 0.908333 -16.16 <.0001 
X4 808.76588 447.8614 1.81 0.0720 
X4*X4 65.130452 9.874699 6.60 <.0001 
X11 -206.4181 776.4456 -0.27 0.7906 
X11*X11 44.323444 9.874699 4.49 <.0001 
X23 -2551.273 260.3907 -9.80 <0001 
X23*X23 52.752642 9.874699 5.34 <.0001 
X24 -1374.363 672.4246 -2.04 0.0419 
X24*X24 26.036126 9.874699 2.64 0.0089 
X25 -770.189 123.1093 -6.26 <.0001 
X25*X25 64.319268 9.874699 6.51 <.0001 
X31 -1656.424 280.0714 -5.91 <.0001 
X31*X31 29.98537 9.874699 3.04 0.0026 
X32 -2021.564 358.5487 -5.64 <.0001 
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X32*X32 
X33 
X33*X33 
X34 
X34*X34 
X36 
X36*X36 
X39 
X39*X39 
X62 
X62*X62 
X4*X43 
X43 
X43*X43 
X43*X62 
X32*X36 
X24*X43 

19.56145 9.874699 1.98 0.0486 

-2269.759 397.2903 -5.71 <.0001 

23.393128 9.874699 2.37 0.0185 

-2094.686 420.3747 -4.98 <.0001 

33.193372 9.874699 3.36 0.0009 

-1657.843 376.1059 -4.41 <0001 

35.352226 9.874699 3.58 0.0004 

-1624.574 335.8145 -4.84 <.0001 

44.522032 9.874699 4.51 <.0001 

-3317.159 4026.074 -0.82 0.4107 

20.937604 9.874699 2.12 0.0349 

-7.79008 0.908333 -8.58 <.0001 

-4501.752 7629.684 -0.59 0.5557 

6.1805064 9.874715 0.63 0.5319 

5.2905849 10.31668 0.51 0.6085 

1.7477877 0.908333 1.92 0.0554 

-2.238108 0.908333 -2.46 0.0144 



APPENDIX H: 20-Term Quadratic Centered CCD Results. 

Response: Response 
Summary of Fit 

RSquare 0.991196 
RSquare Adj 0.989807 
Root Mean Square Error 224.1543 
Mean of Response 259082.7 
Observations (or Sum Wgts) 324 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 
Model 44 1578177439 35867669 713.8532 
Error 279 14018400.4 50245.16 Prob>F 
C Total 323 1592195839 

Lack of Fit 

<.0001 

Source DF Sum of Squares Mean Square F Ratio 
Lack of Fit 238 11873393 49888.2 0.9536 
Pure Error 41 2145008 52317.3 Prob>F 
Total Error 279 14018400 0.6009 
Max RSq 
0.9987 

Parameter Estimates 
Term Estimate Std Error t Ratio Prob>lt| 
Intercept 2321042.2 904587.7 2.57 0.0108 
X23*X24 3.3108589 0.560386 5.91 <.0001 
X24*X25 1.1674145 0.560386 2.08 0.0381 
X11*X32 -4.537755 0.560386 -8.10 <.0001 
X31*X32 1.8085418 0.560386 3.23 0.0014 
X11*X33 -3.024751 0.560386 -5.40 <.0001 
X31*X33 1.0378902 0.560386 1.85 0.0651 
X32*X33 5.4214124 0.560386 9.67 <.0001 
X31*X34 -1.473253 0.560386 -2.63 0.0090 
X32*X34 1.7675876 0.560386 3.15 0.0018 
X33*X34 2.8927503 0.560386 5.16 <.0001 
X23*X36 -2.010192 0.560386 -3.59 0.0004 
X23*X39 1.4024652 0.560386 2.50 0.0129 
X11*X43 -7.640161 0.560386 -13.63 <0001 
X36*X62 1.0538908 0.560386 1.88 0.0611 
X4*X11 9.4314731 0.560386 16.83 <.0001 
X4*X25 -8.148226 0.560386 -14.54 <.0001 
X4*X43 -8.056264 0.560386 -14.38 <.0001 
X4*X62 1.0557426 0.560386 1.88 0.0606 
X4 1463.2532 284.3831 5.15 <.0001 
X4*X4 43.642317 6.092085 7.16 <0001 
X11 708.48996 478.5695 1.48 0.1399 
X11*X11 31.963091 6.092085 5.25 <0001 
X23 -569.0956 196.4973 -2.90 0.0041 
X23*X23 12.657967 6.092085 2.08 0.0386 
X24 -443.1499 390.0391 -1.14 0.2569 
X24*X24 5.3961512 6.092085 0.89 0.3765 
X25 -474.3244 111.4665 -4.26 <0001 
X25*X25 26.269091 6.092085 4.31 <.0001 
X31 -308.4809 208.2489 -1.48 0.1397 
X31*X31 6.9440391 6.092085 1.14 0.2553 
X32 -233.067 257.4288 -0.91 0.3661 
X32*X32 3.8464511 6.092085 0.63 0.5283 
X33 202.88064 281.613 0.72 0.4719 
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X33*X33 
X34 
X34*X34 
X36 
X36*X36 
X39 
X39*X39 
X43 
X43*X43 
X62 
X62*X62 

-7.326207 6.092085 -1.20 0.2302 
-1124.084 268.8027 -4.18 <.0001 
21.133287 6.092085 3.47 0.0006 
-872.4175 268.7081 -3.25 0.0013 
18.322487 6.092085 3.01 0.0029 
-227.1465 243.8643 -0.93 0.3524 
4.6256471 6.092085 0.76 0.4483 
-10480.69 4703.147 -2.23 0.0266 
14.047911 6.092095 2.31 0.0218 
-1018.463 353.6669 -2.88 0.0043 
16.274521 6.092085 2.67 0.0080 
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APPENDIX I: 20-Term Modified Simplex-Lattice Koshal Design Results. 

Response: Response 
Summary of Fit 

RSquare 0.975679 
RSquare Adj 0.974213 
Root Mean Square Error 17417.16 
Mean of Response 282484.3 
Observations (or Sum Wgts) 300 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 17 3.43185e12 2.019e11 665.4640 
Error 282 8.55469e10 3.0336e8 Prob>F 
C Total 299 3.5174e+12 

Lack of Fit 

<.0001 

Source DF Sum of Squares Mean Square F Ratio 
Lack of Fit 271 8.55462e10 3.1567e8 5300.927 
Pure Error 11 655046.753 59549.7 Prob>F 
Total Error 282 8.55469e10 <.0001 
Max RSq 
1.0000 

Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t| 
X1*X19 -109.5599 2.186617 -50.10 <.0001 
X2*X4 -154.1413 20.36459 -7.57 <.0001 
X1 1254.7085 28.95107 43.34 <.0001 
X2 1229.013 28.99592 42.39 <.0001 
X3 1168.1931 28.94112 40.36 <.0001 
X4 1259.9121 29.02028 43.41 <.0001 
X7 1236.53 28.98149 42.67 <.0001 
X10 1214.3189 28.98044 41.90 <0001 
X11 1193.3451 28.97309 41.19 <.0001 
X12 1186.906 28.96554 40.98 <.0001 
X13 1205.3034 28.9655 41.61 <.0001 
X14 1207.0091 28.97622 41.66 <.0001 
X15 1192.8421 28.96919 41.18 <0001 
X16 1216.4698 28.97722 41.98 <0001 
X17 1200.8016 28.95631 41.47 <.0001 
X18 1221.3663 28.9741 42.15 <.0001 
X19 1219.8492 29.01718 42.04 <.0001 
X21 1191.1923 28.97175 41.12 <.0001 
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APPENDIX J: SSN Screening Design Results. 

Response: Response 
Summary of Fit 

RSquare 0.866135 

RSquare Adi 0.856882 
Root Mean Square Error 1.598977 
Mean of Response 14.25722 
Observations (or Sum Wgts) 233 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 15 3589.7399 239.316 93.6024 

Error 217 554.8101 2.557 Prob>F 

C Total 232 4144.5500 

Lack of Fit 

<.0001 

Source DF Sum of Squares Mean Square F Ratio 

Lack of Fit 129 490.56735 3.80285 5.2092 

Pure Error 88 64.24276 0.73003 Prob>F 

Total Error 217 554.81011 <0001 

MaxRSq 
0.9845 

Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t| 

Intercept 42.271817 3.342492 12.65 <.0001 

X12 -0.046289 0.014626 -3.16 0.0018 

X17 -0.045825 0.014626 -3.13 0.0020 

X19 -0.042661 0.014626 -2.92 0.0039 

X21 -0.062233 0.014626 -4.25 <.0001 

X24 -0.074361 0.014626 -5.08 <.0001 

X30 -0.043002 0.014626 -2.94 0.0036 

X33 -1.36179 0.355138 -3.83 0.0002 

X33*X33 0.0294913 0.008064 3.66 0.0003 

X40 -0.071224 0.018283 -3.90 0.0001 

X41 -0.053037 0.014626 -3.63 0.0004 

X43 -0.052874 0.014626 -3.61 0.0004 

X53 -1.035472 0.179946 -5.75 <0001 

X53*X53 0.0562222 0.009956 5.65 <0001 

X60 -0.05739 0.020895 -2.75 0.0065 

X64 -0.072194 0.014626 -4.94 <.0001 
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APPENDIX K: SSN CCD Results. 

Response: Response 
Summary of Fit 

RSquare 0.896045 
RSquare Adj 0.883586 
Root Mean Squ are Error 0.885606 
Mean of Response 12.93567 
Observations (or Sum Wgts) 300 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 32 1805.0057 56.4064 71.9197 

Error 267 209.4074 0.7843 Prob>F 

C Total 299 2014.4130 

Lack of Fit 

<.0001 

Source DF Sum of Squares Mean Square F Ratio 
Lack of Fit 250 197.71777 0.790871 1.1501 
Pure Error 17 11.68963 0.687625 Prob>F 
Total Error 267 209.40739 0.3891 
MaxRSq 
0.9942 

Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t| 
Intercept 34.404515 0.91822 37.47 <0001 
17 -0.354809 0.091125 -3.89 0.0001 
19 -0.106144 0.020675 -5.13 <.0001 
21 -0.539014 0.094082 -5.73 <0001 
24 -0.078173 0.007813 -10.01 <.0001 
30 -0,059246 0.012661 -4.68 <0001 
33 -0.195804 0.027095 -7.23 <.0001 
40 -0.266675 0.041196 -6.47 <0001 
41 -0.10639 0.009575 -11.11 <00Q1 
43 -0.130725 0.01549 -8.44 <.0001 
53 -0.036229 0.023781 -1.52 0.1288 
60 -0.139839 0.02028 -6.90 <0001 
17*17 0.0125461 0.004491 2.79 0.0056 
21*21 0.0158001 0.004491 3.52 0.0005 
12*40 0.0011789 0.000692 1.70 0.0896 
12*64 -0.003125 0.000326 -9.60 <.0001 
19*30 0.001031 0.000554 1.86 0.0636 
21*33 -0.001002 0.000554 -1.81 0.0715 
33*40 0.0015349 0.000692 2,22 0.0274 
21*41 0.0025412 0.000554 4.59 <.0001 
40*41 0.0014065 0.000692 2.03 0.0431 
21*43 0.0021281 0.000554 3.84 0.0002 
33*43 0.0011151 0.000554 2.01 0.0449 
40*43 0.001925 0.000692 2.78 0.0058 
17*53 0.0010512 0.000615 1.71 0.0886 
30*53 -0.000895 0.000615 -1.45 0.1469 
21*60 0.0048547 0.000917 5.29 <0001 
24*60 0.0019155 0.000791 2.42 0.0161 
40*60 -0.001205 0.000988 -1.22 0.2240 
17*64 0.0015133 0.000554 2.73 0.0067 
33*64 0.0033522 0.000554 6.06 <.0001 
40*64 0.0016323 0.000692 2.36 0,0190 
64 -0.114424 0.016932 -6.76 <0001 
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APPENDIX L: Random Number Generator Code and Random Array Arranging Code (C 
Programming Language). 

Random number generator (See Banks et al. 1996) 
{ 

randl = (seedl*40014)%2147483563; 
if(randl < 0) randl = 2147483563 + randl; 

rand2 = (seed2*40692)%2147483399; 
if(rand2 < 0) rand2 = 2147483399 + rand2; 

rand3 = (randl - rand2)%2147483562; 
if(rand3 < 0) rand3 = 2147483562 + rand3; 

seedl = randl; 
seed2 = rand2; 
return rand3; 

} 

Random array ordering procedure for 400 sample points 
{ 

num = 400; 

/*Fill the arrays*/ 
for(il = 0; il <= 399; il++) 
{ 

ordervec[il] = il; /*Produces array of integers from 0 to 399*/ 
randomvec[il] = 0; /*Produces array of zeros*/ 

} 

for(temp = 0; temp <= 399; temp++) 
{ 

/♦Generates random integer between 0 & num-1*/ 
i2 = genl(i2); 
i4 = i2%num; 

if(i4 < 0) i4 = num + i4; 

/♦Places the number from ordervec[i4] into randomvec[temp]*/ 
randomvec[temp] = ordervec[i4]; 

/♦Moves every element in ordervec (below the number drawn) up 1 */ 
for(i3 = i4; i3 <= num-1; i3++) 

{ 
if(i3!=399) ordervec[i3] = ordervec[13+l]; 

} 

/♦Decrements num, but never to zero*/ 
if(num > 1) num--; 

return; 
} 
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APPENDIX M: Sampling Pseudocode. 

Initialize: 
For each random variate, n samples at each point, need three arrays of size n, one with the 

stochastic values and two of zeros. The number of each stochastic value of probability/? is found by 
multiplying p*n. Non-integer values are dealt with using the McKay 1988 procedure (also shown in Bailey 
1995). 

A file of decision variable values (decval.prn) is produced, with each row containing a complete 
set of values to sample space. A separate file (rnum.prn) contains random number seeds and number of 
samples (rows) in decision variable file. 

Sampling: 
Read MPS problem input file into solver 
Read random number seeds and number of samples from rnum.prn. 
Assign i = number of samples 

For loop counter = 0 to loop counter = i-1 
Read next row of decision variable values from decval.prn 
Change decision variable values in solver 

For loop counter 2 = 0 to loop counter 2 = «-1 
Arrange random vector (see Appendix L) 
Arrange stochastic vectors in random order of random vector 
Change stochastic values in solver 
Optimize problem with current values 
Store solution value 
End 

Compute average of values 
Print average to file 
End 

End 
End 

End 
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APPENDIX N: 20-Term CCD Design Matrix. 

Run X4 X11 X23 X24 X25 X31 X32 X33 X34 X36 X39 X43 X62 

1 
2 1   1   1   1   1-1   1   1-1-1-1 

3 1111-1111-111 

4 1   1   1   1-1-1   1   1   1-1-1 

5 1   1   1-1   1   1   1-1-1-1-1 

6 111-11-11-1111 

7 1   1   1-1-1   1   1-1   1-1-1 

8 1   1   1-1-1-1   1-1-1   1   1 

9 11-11111-1-111 

10 1   1-1   1   1-1   1-1   1-1-1 

11 1   1-1   1-1   11-1   1   1   1 

12 1   1-1   1-1-1   1-1  -1  -1  -1 

13 1   1-1-1   1   1   1   1   1-1-1 

14 1   1-1-1   1-1   1   1-1   1   1 

15 1   1-1-1-1   1   1   1-1-1  -1 

16 I   1   1-1-1-1-1   1   1   1   1   1 

17 I   1-1   1   1   1   1-1-1   1-1   1 

18 I   1-1   1   1   1-1-1-1-1   1-1 

19 I   1-1   1   1-1   1-1-1-1-1   1 

20 I   1-1   1   1-1-1-1-1   1   1-1 

21 I   1-1   1-1   1   1-1   1-1   1-1 

22 1   1-1   1-1   1-1-1   1   1-1   1 

23 1   1-1   1-1-1   1-1   1   1   1-1 

24 1   1-1   1-1-1  -1  -1   1-1-1   1 

25 1   1-1-1   1   1   1-1   1-1-1   1 

26 1   1-1-1   1   1-1-1   1   1   1-1 

27 1   1-1-1   1-1   1-1   1   1-1   1 

28 1   1-1-1   1-1  -1  -11-11  -1 

29 1   1-1-1-1   1   1-1-1   1   1-1 

30 1   1-1-1-1   1  -1  -1  -1  -1  -1   1 

31 1   1-1-1  -1  -1   1  -1  -1  -1   1  -1 

32 1   1-1-1  -1  -1  -1  -1  -1   1-1   1 

33 1-1   1   1   1   1   1-1-1   1   1-1 

34 1-1   1   1   1   1-1-1-1-1-1   1 

35 1-1   1   1   1-1   1-1-1-1   1-1 

36 1-1   1   1   1-1-1-1-1   1-1   1 

37 1-1   1   1-1   1   1-1   1-1-1   1 

38 1-1   1   1-1   1-1-1   1   1   1-1 

39 1-1   1   1-1-1   1-1   1   1-1   1 

40 1-1   1   1-1-1  -1  -1   1-1   1  -1 

41 1-1   1-1   1   1   1-1   1-1   1-1 

42 1-1   1-1   1   1-1-1   1   1-1   1 

43 1-1   1-1   1-1   1-1   1   1   1-1 
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44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
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94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
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144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
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194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
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244 -1 -1 -1 -1 -1 -1 -1 -1 

245 -1 -1 -1 -1 -1 -1 -1 -1 -1 

246 -1 -1 -1 -1 -1 -1 -1 
247 -1 -1 -1 -1 -1 -1 -1 -1 -1 

248 -1 -1 -1 -1 -1 -1 -1 -1 -1 
249 -1 -1 -1 -1 -1 -1 -1 
250 -1 -1 -1 -1 -1 -1 -1 -1 -1 

251 -1 -1 -1 -1 -1 -1 -1 
252 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

253 -1 -1 -1 -1 -1 -1 -1 -1 
254 -1 -1 -1 -1 -1 -1 -1 -1 
255 -1 -1 -1 
256 
257 0 0 0 0 0 0 0 0 0 0 0 0 
258 -1 0 0 0 0 0 0 0 0 0 0 0 0 
259 0 0 0 0 0 0 0 0 0 0 0 0 
260 0 -1 0 0 0 0 0 0 0 0 0 0 0 
261 0 0 1 0 0 0 0 0 0 0 0 0 0 
262 0 0 -1 0 0 0 0 0 0 0 0 0 0 
263 0 0 0 1 0 0 0 0 0 0 0 0 0 
264 0 0 0 -1 0 0 0 0 0 0 0 0 0 
265 0 0 0 0 1 0 0 0 0 0 0 0 0 
266 0 0 0 0 -1 0 0 0 0 0 0 0 0 
267 0 0 0 0 0 1 0 0 0 0 0 0 0 
268 0 0 0 0 0 -1 0 0 0 0 0 0 0 
269 0 0 0 0 0 0 1 0 0 0 0 0 0 
270 0 0 0 0 0 0 -1 0 0 0 0 0 0 
271 0 0 0 0 0 0 0 1 0 0 0 0 0 
272 0 0 0 0 0 0 0 -1 0 0 0 0 0 
273 0 0 0 0 0 0 0 0 1 0 0 0 0 
274 0 0 0 0 0 0 0 0 -1 0 0 0 0 
275 0 0 0 0 0 0 0 0 0 1 0 0 0 
276 0 0 0 0 0 0 0 0 0 -1 0 0 0 
277 0 0 0 0 0 0 0 0 0 0 1 0 0 
278 0 0 0 0 0 0 0 0 0 0 -1 0 0 
279 0 0 0 0 0 0 0 0 0 0 0 1 0 
280 0 0 0 0 0 0 0 0 0 0 0 -1 0 
281 0 0 0 0 0 0 0 0 0 0 0 0 1 
282 0 0 0 0 0 0 0 0 0 0 0 0 -1 
283 0 0 0 0 0 0 0 0 0 0 0 0 0 
284 0 0 0 0 0 0 0 0 0 0 0 0 0 
285 0 0 0 0 0 0 0 0 0 0 0 0 0 
286 0 0 0 0 0 0 0 0 0 0 0 0 0 
287 0 0 0 0 0 0 0 0 0 0 0 0 0 
288 0 0 0 0 0 0 0 0 0 0 0 0 0 
289 0 0 0 0 0 0 0 0 0 0 0 0 0 
290 0 0 0 0 0 0 0 0 0 0 0 0 0 
291 0 0 0 0 0 0 0 0 0 0 0 0 0 
292 0 0 0 0 0 0 0 0 0 0 0 0 0 
293 0 0 0 0 0 0 0 0 0 0 0 0 0 
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294 0 0 0 0 0 0 0 0 0 0 0 0 0 

295 0 0 0 0 0 0 0 0 0 0 0 0 0 

296 0 0 0 0 0 0 0 0 0 0 0 0 0 

297 0 0 0 0 0 0 0 0 0 0 0 0 0 

298 0 0 0 0 0 0 0 0 0 0 0 0 0 

299 0 0 0 0 0 0 0 0 0 0 0 0 0 

300 0 0 0 0 0 0 0 0 0 0 0 0 0 

301 0 0 0 0 0 0 0 0 0 0 0 0 0 

302 0 0 0 0 0 0 0 0 0 0 0 0 0 

303 0 0 0 0 0 0 0 0 0 0 0 0 0 

304 0 0 0 0 0 0 0 0 0 0 0 0 0 

305 0 0 0 0 0 0 0 0 0 0 0 0 0 

306 0 0 0 0 0 0 0 0 0 0 0 0 0 

307 0 0 0 0 0 0 0 0 0 0 0 0 0 

308 0 0 0 0 0 0 0 0 0 0 0 0 0 

309 0 0 0 0 0 0 0 0 0 0 0 0 0 

310 0 0 0 0 0 0 0 0 0 0 0 0 0 

311 0 0 0 0 0 0 0 0 0 0 0 0 0 

312 0 0 0 0 0 0 0 0 0 0 0 0 0 

313 0 0 0 0 0 0 0 0 0 0 0 0 0 

314 0 0 0 0 0 0 0 0 0 0 0 0 0 
315 0 0 0 0 0 0 0 0 0 0 0 0 0 
316 0 0 0 0 0 0 0 0 0 0 0 0 0 

317 0 0 0 0 0 0 0 0 0 0 0 0 0 
318 0 0 0 0 0 0 0 0 0 0 0 0 0 
319 0 0 0 0 0 0 0 0 0 0 0 0 0 
320 0 0 0 0 0 0 0 0 0 0 0 0 0 
321 0 0 0 0 0 0 0 0 0 0 0 0 0 
322 0 0 0 0 0 0 0 0 0 0 0 0 0 
323 0 0 0 0 0 0 0 0 0 0 0 0 0 
324 0 0 0 0 0 0 0 0 0 0 0 0 0 
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APPENDIX O: 20-Term Minimal Bias Design Matrix. 

N X4 X11   X23   X24   X25   X31   X32   X33   X34   X36 X39   X43 X62 

1        1 
2       1 111111-111 -1       -1 -1 

3       1 11111-1111 -1        1 

4       1 11111-1-111 1       -1 -1 

5        1 1111-1111-1 -1       -1 -1 

6        1 1        1        1        1-1        1-1        1-1 
7       1 1        1        1        1-1-1        1        1-1 1       -1 -1 

8        1 1        1        1        1-1-1-1        1-1 -1        1 

9       1 111-11111-1 -1        1 

10       1 1        1        1-1        1        1-1        1-1 1       -1 -1 

11 1        1        1-1        1-1        1        1-1 
12        1 1        1        1-1        1-1-1        1-1 -1       -1 -1 

13 111-1-11111 1 -1 

14 11        1-1-1        1-1        1        1 -1        1 
15 1111-1-1-1111 -1       -1 -1 

16 1        11-1-1-1-1        1        1 
17 t        1        1       -1        1        1        1        1       -1       -1 1       -1 
18 I        1        1-1        1        1        1-1-1-1 -1        1 -1 

19 1        1        1-1        1        1-1        1-1-1 -1       -1 
20 1        1        1-1        1        1-1-1-1-1 -1 
21 111-11-111-11 -1 -1 
22 1        1        1-1        1-1        1-1-1        1 1       -1 
23 1        1        1-1        1-1-1        1-1        1 -1 
24 1        1        1-1        1-1-1-1-1        1 -1       -1 

25 1        1        1-1-1        1        1        1-1        1 -1 
26 1        1        1-1-1        1        1-1-1        1 -1 
27 1        1        1-1-1        1-1        1-1 1 
28 1        1        1-1-1        1-1-1-1        " -1 -1 
29 1        1        1-1-1-1        1        1       -1 I       -1 
30 1        1        1-1-1-1        1-1       -1 -1 
31 1        1        1-1-1-1-1        1       -1 I       -1 I       -1 
32 1 
33 1        1-1        1        1        1        1        1       -1 1       -1 
34 1        1-1        1        1        1        1       -1       -1 -1 
35 1        1-1        1        1        1-1        1       -1       - t       -1 
36 1        1-1        1        1        1       -1       -1       -1 I        1 
37 1        1-1        1        1-1        1        1-1 1       -1 
38 1        1-1        1        1-1        1-1-1 1       -1 
39 1        1-1        1        1-1-1        1-1 
40 1        1-1        1        1-1-1-1       -1 1       -1 
41 
42 1        1-1        1-1        1        1-1-1 
43 

0-1 



44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 

0-2 



94   1 -1 -1 -1 -1 -1 -1 -1 

95   1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

96   1 -1 -1 -1 -1 -1 -1 -1 

97   1 -1 -1 -1 -1 -1 

98   1 -1 -1 -1 -1 -1 

99   1 -1 -1 -1 -1 -1 -1 -1 

100   1 -1 -1 -1 -1 -1 

101   1 -1 -1 -1 -1 

102   1 -' -1 -1 -1 -1 -1 

103   1 -1 -1 -1 -1 

104   1 -' -1 --1 -1 -1 -1 -1 -1 

105   1 -' -1 -1 -1 -1 -1 

106   1 - -1 -' -1 

107   1 - -1 -' -1 -1 -1 

108   1 -' -1 - -1 -' -' 

109   1 -' -1 - -' -' 

110   1 - -1 -' -' -1 -1 -1 -1 -1 
111   1 -' -1 - -1 -1 -1 -1 

112   1 - - - -' -' -' -' -' -1 

113   1 - -1 -' -" -1 

114   1 - -' -' -' -' -' -' 

115   1 -' -1 -' -1 -1 -1 -1 

116   1 -' -' -' -' -' -' -1 

117   1 -' -' -' -' -1 -' -1 -1 

118   1 -' -' -' -' -' -' -' -1 

119   1 -' -' -' -' -' -' -' -' 

120   1 -■ -' -' -' -' -' -' -• -' -1 

121   1 -• -' -' - -' -' -' -1 

122   1 -' -' -■ - -1 -1 -1 -1 

123   1 -• -' -' - -' -' -' -1 

124   1 -1 -' -' - -' -' -' -1 -' -■ 

125   1 -• -' -1 -' -1 -' -' 
126   1 -" -• -• -' -1 -• -' -1 -1 

127   1 -' -' -' -■ -• -' -' -' -' 

128   1 -" -' -1 -' -1 -1 -' -' -1 

129  -1 -' -1 

130  -1 -• -' -1 -1 

131  -1 -1 -' -' -1 

132  -1 -1 -1 -' -1 

133  -1 -' -' -1 -1 -' 

134  -1 -' -1 -' -' -1 

135  -1 -1 -1 -' -1 -1 

136  -1 -' -1 -1 -' -' -' -1 

137  -1 -1 -1 -1 -1 -1 

138  -1 -' -" -' -' -' 
139  -1 -' -" -• -' -1 

140  -1 -' -' -' -' -' -' -' 

141  -1 -' - -' -' 

142  -1 -' - -' -1 -' -1 

143  -1 -' -' -" -• --1 
-■ 
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144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 

0-4 



194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 

0-5 



244 -1 1 i 1 -1 1 -1 

245 -1 1 i -1 -1 *1 

246  - -1 1 1 -1 -1 

247  - -1 1 1 1 -1 1 -1 

248  - -1 1 1 1 -1 -1 -1 

249  - -1 1 -1 -1 -1 

250  - -1 1 -1 -1 -1 1 -1 

251 -1 1 -1 1 -1 

-1 -1 1 -1 -1 -1 -1 

253  - -1 -1 1 -1 

254 -1 -1 -1 -1 

255  - -1 -1 

256 -1 1 
257 0 0 0 0 0 0 0 0 0 0 0 0 

258 0 Q 0 0 0 0 0 0 0 0 0 0 

259 0 i n Q 0 0 0 0 n 0 0 0 n 

260 n -1 0 0 0 0 0 0 0 0 0 0 0 

261 0 0 1 0 0 Q Q Q 0 0 0 0 0 

262 n 0 -1 0 n 0 0 o n 0 0 0 0 

0 0 n <! 0 0 0 0 0 0 0 0 0 

264 0 0 n -1 0 0 0 0 0 0 0 0 0 

265 0 0 0 0 1 n 0 0 0 n n 0 Q 

ORR 0 n 0 0 --I n 0 0 0 0 0 0 0 
OR7 0 0 0 0 0 ■1 0 0 0 0 0 o n 

268 n n o 0 0 -1 0 0 0 0 0 Q n 

269 0 0 0 0 0 0 1 0 0 0 0 0 0 

270 0 0 0 0 0 0 -1 0 0 0 n 0 Q 

271 0 0 0 0 0 0 0 1 0 0 0 0 n 

070 
Ami    *-> 0 0 n n 0 0 0 -1 0 0 0 0 0 

273 0 0 0 n n n w 0 0 1 0 0 0 o 
274 o 0 0 0 0 0 0 0 -1 0 0 0 0 

275 0 0 n 0 0 0 0 0 0 1 0 0 0 
07R o n 0 0 0 0 0 Q 0 -1 0 0 n 

277 0 0 n 0 n 0 0 0 0 0 1 0 0 

278 n n n n n n 0 n o 0 -1 0 0 

279 0 0 n 0 0 0 0 0 n n n 1 0 

280 0 n 0 o o 0 0 0 0 0 0 -•] 0 

281 n 0 0 0 0 0 Q 0 0 0 0 0 1 
1 

ORO n n 0 n n o n 0 0 0 0 0 _1 

283 n 0 0 0 0 o 0 n 0 0 0 0 0 

284 o 0 0 n 0 n 0 n n 0 0 n n 

on«; 0 0 n n n 0 0 0 0 0 0 n n 

286 0 0 0 0 o n n 0 0 0 0 0 0 

287 0 0 n o 0 0 0 0 0 Q 0 0 0 

288 0 0 n n 0 0 0 0 0 0 n 0 o 
289 n o o n o o n 0 n 0 0 n n 

oan 0 0 0 n 0 Q n n n 0 0 0 0 
oat n n n n n n n 0 n 0 0 n n 

292 0 n o n o 0 n 0 n 0 0 0 0 

293 n n 0 0 o n 0 0 0 0 n 0 n 
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294 0 0 0 0 0 0 0 0 0 0 0 0 0 

295 0 0 0 0 0 0 0 0 0 0 0 0 0 

296 0 0 0 0 0 0 0 0 0 0 0 0 0 

297 0 0 0 0 0 0 0 0 0 0 0 0 0 

298 0 0 0 0 0 0 0 0 0 0 0 0 0 

299 0 0 0 0 0 0 0 0 0 0 0 0 0 

300 0 0 0 0 0 0 0 0 0 0 0 0 0 

301 0 0 0 0 0 0 0 0 0 0 0 0 0 

302 0 0 0 0 0 0 0 0 0 0 0 0 0 

303 0 0 0 0 0 0 0 0 0 0 0 0 0 

304 0 0 0 0 0 0 0 0 0 0 0 0 0 

305 0 0 0 0 0 0 0 0 0 0 0 0 0 

306 0 0 0 0 0 0 0 0 0 0 0 0 0 

307 0 0 0 0 0 0 0 0 0 0 0 0 0 

308 0 0 0 0 0 0 0 0 0 0 0 0 0 

309 0 0 0 0 0 0 0 0 0 0 0 0 0 

310 0 0 0 0 0 0 0 0 0 0 0 0 0 

311 0 0 0 0 0 0 0 0 0 0 0 0 0 

312 0 0 0 0 0 0 0 0 0 0 0 0 0 

313 0 0 0 0 0 0 0 0 0 0 0 0 0 

314 0 0 0 0 0 0 0 0 0 0 0 0 0 

315 0 0 0 0 0 0 0 0 0 0 0 0 0 

316 0 0 0 0 0 0 0 0 0 0 0 0 0 

317 0 0 0 0 0 0 0 0 0 0 0 0 0 

318 0 0 0 0 0 0 0 0 0 0 0 0 0 

319 0 0 0 0 0 0 0 0 0 0 0 0 0 

320 0 0 0 0 0 0 0 0 0 0 0 0 0 

321 0 0 0 0 0 0 0 0 0 0 0 0 0 

322 0 0 0 0 0 0 0 0 0 0 0 0 0 

323 0 0 0 0 0 0 0 0 0 0 0 0 0 

324 0 0 0 0 0 0 0 0 0 0 0 0 0 
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APPENDIX P: 20-Term MSLK Deviation Matrix. 
Axial points not included 

run X1  X2 X3 X4 X 7 X 10 X 11 X 12 X 13 X 14 X 15 Ä lb X U A lö A ia A <L\ 

1 -5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 -5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 -5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 

4 -5 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 

5 -5 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 

6 -5 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 

7 -5 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 

8 -5 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 

9 -5 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 

10 -5 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 

11 -5 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 

12 -5 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 

13 -5 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 

14 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 

15 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 

16 0 -5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 -5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 -5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 

19 0 -5 0 0 0 5 0 0 0 0 0 0 0 0 0 0 

20 0 -5 0 0 0 0 5 0 0 0 0 0 0 0 0 0 

21 0 -5 0 0 0 0 0 5 0 0 0 0 0 0 0 0 

22 0 -5 0 0 0 0 0 0 5 0 0 0 0 0 0 0 

23 0 -5 0 0 0 0 0 0 0 5 0 0 0 0 0 0 

24 0 -5 0 0 0 0 0 0 0 0 5 0 0 0 0 0 

25 0 -5 0 0 0 0 0 0 0 0 0 5 0 0 0 0 

26 0 -5 0 0 0 0 0 0 0 0 0 0 5 0 0 0 

27 0 -5 0 0 0 0 0 0 0 0 0 0 0 5 0 0 

28 0 -5 0 0 0 0 0 0 0 0 0 0 0 0 5 0 

29 0 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 5 

30 0 0 -5 5 0 0 0 0 0 0 0 0 0 0 0 0 

31 0 0 -5 0 5 0 0 0 0 0 0 0 0 0 0 0 

32 0 0 -5 0 0 5 0 0 0 0 0 0 0 0 0 0 

33 0 0 -5 0 0 0 5 0 0 0 0 0 0 0 0 0 

34 0 0 -5 0 0 0 0 5 0 0 0 0 0 0 0 0 

35 0 0 -5 0 0 0 0 0 5 0 0 0 0 0 0 0 

36 0 0 -5 0 0 0 0 0 0 5 0 0 0 0 0 0 

37 0 0 -5 0 0 0 0 0 0 0 5 0 0 0 0 0 

38 0 0 -5 0 0 0 0 0 0 0 0 5 0 0 0 0 

39 0 0 -5 0 0 0 0 0 0 0 0 0 5 0 0 0 

40 0 0 -5 0 0 0 0 0 0 0 0 0 0 5 0 0 

41 0 0 -5 0 0 0 0 0 0 0 0 0 0 0 5 0 

42 0 0 -5 0 0 0 0 0 0 0 0 0 0 0 0 5 

43 0 0 0 -5 5 0 0 0 0 0 0 0 0 0 0 0 

44 0 0 0 -5 0 5 0 0 0 0 0 0 0 0 0 0 

p-1 



45 0 0 0 -5 0 0 5 0 0 0 0 0 0 0 0 0 

46 0 0 0 -5 0 0 0 5 0 0 0 0 0 0 0 0 

47 0 0 0 -5 0 0 0 0 5 0 0 0 0 0 0 0 

48 0 0 0 -5 0 0 0 0 0 5 0 0 0 0 0 0 

49 0 0 0 -5 0 0 0 0 0 0 5 0 0 0 0 0 

50 0 0 0 -5 0 0 0 0 0 0 0 5 0 0 0 0 

51 0 0 0 -5 0 0 0 0 0 0 0 0 5 0 0 0 

52 0 0 0 -5 0 0 0 0 0 0 0 0 0 5 0 0 

53 0 0 0 -5 0 0 0 0 0 0 0 0 0 0 5 0 

54 0 0 0 -5 0 0 0 0 0 0 0 0 0 0 0 5 

55 0 0 0 0 -5 5 0 0 0 0 0 0 0 0 0 0 

56 0 0 0 0 -5 0 5 0 0 0 0 0 0 0 0 0 

57 0 0 0 0 -5 0 0 5 0 0 0 0 0 0 0 0 

58 0 0 0 0 -5 0 0 0 5 0 0 0 0 0 0 0 

59 0 0 0 0 -5 0 0 0 0 5 0 0 0 0 0 0 

60 0 0 0 0 -5 0 0 0 0 0 5 0 0 0 0 0 

61 0 0 0 0 -5 0 0 0 0 0 0 5 0 0 0 0 

62 0 0 0 0 -5 0 0 0 0 0 0 0 5 0 0 0 

63 0 0 0 0 -5 0 0 0 0 0 0 0 0 5 0 0 

64 0 0 0 0 -5 0 0 0 0 0 0 0 0 0 5 0 

65 0 0 0 0 -5 0 0 0 0 0 0 0 0 0 0 5 

66 0 0 0 0 0 -5 5 0 0 0 0 0 0 0 0 0 

67 0 0 0 0 0 -5 0 5 0 0 0 0 0 0 0 0 

68 0 0 0 0 0 -5 0 0 5 0 0 0 0 0 0 0 

69 0 0 0 0 0 -5 0 0 0 5 0 0 0 0 0 0 

70 0 0 0 0 0 -5 0 0 0 0 5 0 0 0 0 0 

71 0 0 0 0 0 -5 0 0 0 0 0 5 0 0 0 0 

72 0 0 0 0 0 -5 0 0 0 0 0 0 5 0 0 0 

73 0 0 0 0 0 -5 0 0 0 0 0 0 0 5 0 0 

74 0 0 0 0 0 -5 0 0 0 0 0 0 0 0 5 0 

75 0 0 0 0 0 -5 0 0 0 0 0 0 0 0 0 5 

76 0 0 0 0 0 0 -5 5 0 0 0 0 0 0 0 0 

77 0 0 0 0 0 0 -5 0 5 0 0 0 0 0 0 0 

78 0 0 0 0 0 0 -5 0 0 5 0 0 0 0 0 0 

79 0 0 0 0 0 0 -5 0 0 0 5 0 0 0 0 0 

80 0 0 0 0 0 0 -5 0 0 0 0 5 0 0 0 0 

81 0 0 0 0 0 0 -5 0 0 0 0 0 5 0 0 0 

82 0 0 0 0 0 0 -5 0 0 0 0 0 0 5 0 0 

83 0 0 0 0 0 0 -5 0 0 0 0 0 0 0 5 0 

84 0 0 0 0 0 0 -5 0 0 0 0 0 0 0 0 5 

85 0 0 0 0 0 0 0 -5 5 0 0 0 0 0 0 0 

86 0 0 0 0 0 0 0 -5 0 5 0 0 0 0 0 0 

87 0 0 0 0 0 0 0 -5 0 0 5 0 0 0 0 0 

88 0 0 0 0 0 0 0 -5 0 0 0 5 0 0 0 0 

89 0 0 0 0 0 0 0 -5 0 0 0 0 5 0 0 0 

90 0 0 0 0 0 0 0 -5 0 0 0 0 0 5 0 0 

91 0 0 0 0 0 0 0 -5 0 0 0 0 0 0 5 0 

92 0 0 0 0 0 0 0 -5 0 0 0 0 0 0 0 5 

93 0 0 0 0 0 0 0 0 -5 5 0 0 0 0 0 0 

94 0 0 0 0 0 0 0 0 -5 0 5 0 0 0 0 0 

P-2 



95 0 0 0 0 0 0 0 0 -5 0 0 5 0 0 0 0 

96 0 0 0 0 0 0 0 0 -5 0 0 0 5 0 0 0 

97 0 0 0 0 0 0 0 0 -5 0 0 0 0 5 0 0 

98 0 0 0 0 0 0 0 0 -5 0 0 0 0 0 5 0 

99 0 0 0 0 0 0 0 0 -5 0 0 0 0 0 0 5 

100 0 0 0 0 0 0 0 0 0 -5 5 0 0 0 0 0 

101 0 0 0 0 0 0 0 0 0 -5 0 5 0 0 0 0 

102 0 0 0 0 0 0 0 0 0 -5 0 0 5 0 0 0 

103 0 0 0 0 0 0 0 0 0 -5 0 0 0 5 0 0 

104 0 0 0 0 0 0 0 0 0 -5 0 0 0 0 5 0 

105 0 0 0 0 0 0 0 0 0 -5 0 0 0 0 0 5 

106 0 0 0 0 0 0 0 0 0 0 -5 5 0 0 0 0 

107 0 0 0 0 0 0 0 0 0 0 -5 0 5 0 0 0 

108 0 0 0 0 0 0 0 0 0 0 -5 0 0 5 0 0 

109 0 0 0 0 0 0 0 0 0 0 -5 0 0 0 5 0 

110 0 0 0 0 0 0 0 0 0 0 -5 0 0 0 0 5 

111 0 0 0 0 0 0 0 0 0 0 0 -5 5 0 0 0 

112 0 0 0 0 0 0 0 0 0 0 0 -5 0 5 0 0 

113 0 0 0 0 0 0 0 0 0 0 0 -5 0 0 5 0 

114 0 0 0 0 0 0 0 0 0 0 0 -5 0 0 0 5 

115 0 0 0 0 0 0 0 0 0 0 0 0 -5 5 0 0 

116 0 0 0 0 0 0 0 0 0 0 0 0 -5 0 5 0 

117 0 0 0 0 0 0 0 0 0 0 0 0 -5 0 0 5 

118 0 0 0 0 0 0 0 0 0 0 0 0 0 -5 5 0 

119 0 0 0 0 0 0 0 0 0 0 0 0 0 -5 0 5 

120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5 5 

121 5 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

122 5 0 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 

123 5 0 0 -5 0 0 0 0 0 0 0 0 0 0 0 0 

124 5 0 0 0 -5 0 0 0 0 0 0 0 0 0 0 0 

125 5 0 0 0 0 -5 0 0 0 0 0 0 0 0 0 0 

126 5 0 0 0 0 0 -5 0 0 0 0 0 0 0 0 0 

127 5 0 0 0 0 0 0 -5 0 0 0 0 0 0 0 0 

128 5 0 0 0 0 0 0 0 -5 0 0 0 0 0 0 0 

129 5 0 0 0 0 0 0 0 0 -5 0 0 0 0 0 0 

130 5 0 0 0 0 0 0 0 0 0 -5 0 0 0 0 0 

131 5 0 0 0 0 0 0 0 0 0 0 -5 0 0 0 0 

132 5 0 0 0 0 0 0 0 0 0 0 0 -5 0 0 0 

133 5 0 0 0 0 0 0 0 0 0 0 0 0 -5 0 0 

134 5 0 0 0 0 0 0 0 0 0 0 0 0 0 -5 0 

135 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5 

136 0 5 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 

137 0 5 0 -5 0 0 0 0 0 0 0 0 0 0 0 0 

138 0 5 0 0 -5 0 0 0 0 0 0 0 0 0 0 0 

139 0 5 0 0 0 -5 0 0 0 0 0 0 0 0 0 0 

140 0 5 0 0 0 0 -5 0 0 0 0 0 0 0 0 0 

141 0 5 0 0 0 0 0 -5 0 0 0 0 0 0 0 0 

142 0 5 0 0 0 0 0 0 -5 0 0 0 0 0 0 0 

143 0 5 0 0 0 0 0 0 0 -5 0 0 0 0 0 0 

144 0 5 0 0 0 0 0 0 0 0 -5 0 0 0 0 0 
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145 0 5 0 0 0 0 0 0 0 0 0 -5 0 0 0 0 

146 0 5 0 0 0 0 0 0 0 0 0 0 -5 0 0 0 

147 0 5 0 0 0 0 0 0 0 0 0 0 0 -5 0 0 

148 0 5 0 0 0 0 0 0 0 0 0 0 0 0 -5 0 

149 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 -5 

150 0 0 5 -5 0 0 0 0 0 0 0 0 0 0 0 0 

151 0 0 5 0 -5 0 0 0 0 0 0 0 0 0 0 0 

152 0 0 5 0 0 -5 0 0 0 0 0 0 0 0 0 0 

153 0 0 5 0 0 0 -5 0 0 0 0 0 0 0 0 0 

154 0 0 5 0 0 0 0 -5 0 0 0 0 0 0 0 0 

155 0 0 5 0 0 0 0 0 -5 0 0 0 0 0 0 0 

156 0 0 5 0 0 0 0 0 0 -5 0 0 0 0 0 0 

157 0 0 5 0 0 0 0 0 0 0 -5 0 0 0 0 0 

158 0 0 5 0 0 0 0 0 0 0 0 -5 0 0 0 0 

159 0 0 5 0 0 0 0 0 0 0 0 0 . -5 0 0 0 

160 0 0 5 0 0 0 0 0 0 0 0 0 0 -5 0 0 

161 0 0 5 0 0 0 0 0 0 0 0 0 0 0 -5 0 

162 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 -5 

163 0 0 0 5 -5 0 0 0 0 0 0 0 0 0 0 0 

164 0 0 0 5 0 -5 0 0 0 0 0 0 0 0 0 0 

165 0 0 0 5 0 0 -5 0 0 0 0 0 0 0 0 0 

166 0 0 0 5 0 0 0 -5 0 0 0 0 0 0 0 0 

167 0 0 0 5 0 0 0 0 -5 0 0 0 0 0 0 0 

168 0 0 0 5 0 0 0 0 0 -5 0 0 0 0 0 0 

169 0 0 0 5 0 0 0 0 0 0 -5 0 0 0 0 0 

170 0 0 0 5 0 0 0 0 0 0 0 -5 0 0 0 0 

171 0 0 0 5 0 0 0 0 0 0 0 0 -5 0 0 0 

172 0 0 0 5 0 0 0 0 0 0 0 0 0 -5 0 0 

173 0 0 0 5 0 0 0 0 0 0 0 0 0 0 -5 0 

174 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 -5 

175 0 0 0 0 5 -5 0 0 0 0 0 0 0 0 0 0 

176 0 0 0 0 5 0 -5 0 0 0 0 0 0 0 0 0 

177 0 0 0 0 5 0 0 -5 0 0 0 0 0 0 0 0 

178 0 0 0 0 5 0 0 0 -5 0 0 0 0 0 0 0 

179 0 0 0 0 5 0 0 0 0 -5 0 0 0 0 0 0 

180 0 0 0 0 5 0 0 0 0 0 -5 0 0 0 0 0 

181 0 0 0 0 5 0 0 0 0 0 0 -5 0 0 0 0 

182 0 0 0 0 5 0 0 0 0 0 0 0 -5 0 0 0 

183 0 0 0 0 5 0 0 0 0 0 0 0 0 -5 0 0 

184 0 0 0 0 5 0 0 0 0 0 0 0 0 0 -5 0 

185 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 -5 

186 0 0 0 0 0 5 -5 0 0 0 0 0 0 0 0 0 

187 0 0 0 0 0 5 0 -5 0 0 0 0 0 0 0 0 

188 0 0 0 0 0 5 0 0 -5 0 0 0 0 0 0 0 

189 0 0 0 0 0 5 0 0 0 -5 0 0 0 0 0 0 

190 0 0 0 0 0 5 0 0 0 0 -5 0 0 0 0 0 

191 0 0 0 0 0 5 0 0 0 0 0 -5 0 0 0 0 

192 0 0 0 0 0 5 0 0 0 0 0 0 -5 0 0 0 

193 0 0 0 0 0 5 0 0 0 0 0 0 0 -5 0 0 

194 0 0 0 0 0 5 0 0 0 0 0 0 0 0 -5 0 
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195 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 -5 

196 0 0 0 0 0 0 5 -5 0 0 0 0 0 0 0 0 

197 0 0 0 0 0 0 5 0 -5 0 0 0 0 0 0 0 

198 0 0 0 0 0 0 5 0 0 -5 0 0 0 0 0 0 

199 0 0 0 0 0 0 5 0 0 0 -5 0 0 0 0 0 

200 0 0 0 0 0 0 5 0 0 0 0 -5 0 0 0 0 

201 0 0 0 0 0 0 5 0 0 0 0 0 -5 0 0 0 

202 0 0 0 0 0 0 5 0 0 0 0 0 0 -5 0 0 

203 0 0 0 0 0 0 5 0 0 0 0 0 0 0 -5 0 

204 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 -5 

205 0 0 0 0 0 0 0 5 -5 0 0 0 0 0 0 0 

206 0 0 0 0 0 0 0 5 0 -5 0 0 0 0 0 0 

207 0 0 0 0 0 0 0 5 0 0 -5 0 0 0 0 0 

208 0 0 0 0 0 0 0 5 0 0 0 -5 0 0 0 0 

209 0 0 0 0 0 0 0 5 0 0 0 0 -5 0 0 0 

210 0 0 0 0 0 0 0 5 0 0 0 0 0 -5 0 0 

211 0 0 0 0 0 0 0 5 0 0 0 0 0 0 -5 0 

212 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 -5 

213 0 0 0 0 0 0 0 0 5 -5 0 0 0 0 0 0 

214 0 0 0 0 0 0 0 0 5 0 -5 0 0 0 0 0 

215 0 0 0 0 0 0 0 0 5 0 0 -5 0 0 0 0 

216 0 0 0 0 0 0 0 0 5 0 0 0 -5 0 0 0 

217 0 0 0 0 0 0 0 0 5 0 0 0 0 -5 0 0 

218 0 0 0 0 0 0 0 0 5 0 0 0 0 0 -5 0 

219 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 -5 

220 0 0 0 0 0 0 0 0 0 5 -5 0 0 0 0 0 

221 0 0 0 0 0 0 0 0 0 5 0 -5 0 0 0 0 

222 0 0 0 0 0 0 0 0 0 5 0 0 -5 0 0 0 

223 0 0 0 0 0 0 0 0 0 5 0 0 0 -5 0 0 

224 0 0 0 0 0 0 0 0 0 5 0 0 0 0 -5 0 

225 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 -5 

226 0 0 0 0 0 0 0 0 0 0 5 -5 0 0 0 0 

227 0 0 0 0 0 0 0 0 0 0 5 0 -5 0 0 0 

228 0 0 0 0 0 0 0 0 0 0 5 0 0 -5 0 0 

229 0 0 0 0 0 0 0 0 0 0 5 0 0 0 -5 0 

230 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 -5 

231 0 0 0 0 0 0 0 0 0 0 0 5 -5 0 0 0 

232 0 0 0 0 0 0 0 0 0 0 0 5 0 -5 0 0 

233 0 0 0 0 0 0 0 0 0 0 0 5 0 0 -5 0 

234 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 -5 

235 0 0 0 0 0 0 0 0 0 0 0 0 5 -5 0 0 

236 0 0 0 0 0 0 0 0 0 0 0 0 5 0 -5 0 

237 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 -5 

238 0 0 0 0 0 0 0 0 0 0 0 0 0 5 -5 0 

239 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 -5 

240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 -5 

241 5 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 

242 0 5 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 

243 0 0 5 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 

244 0 0 0 5 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 
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245 0 0 0 0 5 -1 -1 -1 -1 -1 0 0 0 0 0 0 

246 0 0 0 0 0 5 -1 -1 -1 -1 -1 0 0 0 0 0 

247 0 0 0 0 0 0 5 -1 -1 -1 -1 -1 0 0 0 0 

248 0 0 0 0 0 0 0 5 -1 -1 -1 -1 -1 0 0 0 

249 0 0 0 0 0 0 0 0 5 -1 -1 -1 -1 -1 0 0 

250 0 0 0 0 0 0 0 0 0 5 -1 -1 -1 -1 -1 0 

251 0 0 0 0 0 0 0 0 0 0 5 -1 -1 -1 -1 ~ I 

252 _1 0 0 0 0 0 0 0 0 0 0 5 -1 -1 -1 -n 

253 -1 _"l 0 0 0 0 0 0 0 0 0 0 5 -1 -1 -1 

254 „I -1 _1 0 0 0 0 0 0 0 0 0 0 5 -1 -1 

255 _1 -1 _"J -I 0 0 0 0 0 0 0 0 0 0 5 -1 

256 -1 _i _1 _^ -1 0 0 0 0 0 0 0 0 0 0 5 

257 -5 0 0 0 0 0 0 0 0 0 0 

258 0 -5 0 0 0 0 0 0 0 0 0 

259 0 0 -5 0 0 0 0 0 0 0 0 

260 0 0 0 -5 0 0 0 0 0 0 0 

261 0 0 0 0 -5 0 0 0 0 0 0 

262 0 0 0 0 0 -5 0 0 0 0 0 

263 0 0 0 0 0 0 -5 0 0 0 0 

264 0 0 0 0 0 0 0 -5 0 0 0 

265 0 0 0 0 0 0 0 0 -5 0 0 

266 0 0 0 0 0 0 0 0 0 -5 0 

267 0 0 0 0 0 0 0 0 0 0 -5 

268 0 0 0 0 0 0 0 0 0 0 -5 

269 1 0 0 0 0 0 0 0 0 0 0 -5 

270 1 1 0 0 0 0 0 0 0 0 0 0 -5 

271 1 1 1 0 0 0 0 0 0 0 0 0 0 -5 

272 1 1 1 1 0 0 0 0 0 0 0 0 0 0 -5 

273 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

274 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

275 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

276 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

277 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

279 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

281 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

283 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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APPENDIX Q: SSN CCD Design Matrix. 

Run X12 X17 X19 X21 X24 X30 X33 X40 X41 X43 X53 X60 X64 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

Q-l 



47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 

Q-2 



97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 

Q-3 



147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 

Q-4 



197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 

Q-5 



247 -1 -1 -1 -1 -1 -1 -1 -1 -1 

248 -1 -1 -1 -1 -1 -1 -1 -1 -1 

249 -1 -1 -1 -1 -1 -1 -1 

250 -1 -1 -1 -1 -1 -1 -1 -1 -1 

251 -1 -1 -1 -1 -1 -1 -1 

252 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

253 -1 -1 -1 -1 -1 -1 -1 -1 

254 -1 -1 -1 -1 -1 -1 -1 -1 

255 -1 -1 -1 

256 
257 0 0 0 0 0 0 0 0 0 0 0 0 

258 ."I 0 0 0 0 0 0 0 0 0 0 0 0 

259 0 1 0 0 0 0 0 0 0 0 0 0 0 

260 0 -1 0 0 0 0 0 0 0 0 0 0 0 

261 0 0 1 0 0 0 0 0 0 0 0 0 0 

262 0 0 -1 0 0 0 0 0 0 0 0 0 0 

263 0 0 0 1 0 0 0 0 0 0 0 0 0 

264 0 0 0 -1 0 0 0 0 0 0 0 0 0 

265 0 0 0 0 1 0 0 0 0 0 0 0 0 

266 0 0 0 0 -1 0 0 0 0 0 0 0 0 

267 0 0 0 0 0 1 0 0 0 0 0 0 0 

268 0 0 0 0 0 -1 0 0 0 0 0 0 0 

269 0 0 0 0 0 0 1 0 0 0 0 0 0 

270 0 0 0 0 0 0 -1 0 0 0 0 0 0 

271 0 0 0 0 0 0 0 1 0 0 0 0 0 

272 0 0 0 0 0 0 0 -1 0 0 0 0 0 

273 0 0 0 0 0 0 0 0 1 0 0 0 0 

274 0 0 0 0 0 0 0 0 -1 0 0 0 0 

275 0 0 0 0 0 0 0 0 0 1 0 0 0 

276 0 0 0 0 0 0 0 0 0 -1 0 0 0 

277 0 0 0 0 0 0 0 0 0 0 1 0 0 

278 0 0 0 0 0 0 0 0 0 0 -1 0 0 

279 0 0 0 0 0 0 0 0 0 0 0 1 0 

280 0 0 0 0 0 0 0 0 0 0 0 -1 0 

281 0 0 0 0 0 0 0 0 0 0 0 0 1 

282 0 0 0 0 0 0 0 0 0 0 0 0 -1 

283 0 0 0 0 0 0 0 0 0 0 0 0 0 

284 0 0 0 0 0 0 0 0 0 0 0 0 0 

285 0 0 0 0 0 0 0 0 0 0 0 0 0 

286 0 0 0 0 0 0 0 0 0 0 0 0 0 

287 0 0 0 0 0 0 0 0 0 0 0 0 0 

288 0 0 0 0 0 0 0 0 0 0 0 0 0 

289 0 0 0 0 0 0 0 0 0 0 0 0 0 

290 0 0 0 0 0 0 0 0 0 0 0 0 0 

291 0 0 0 0 0 0 0 0 0 0 0 0 0 

292 0 0 0 0 0 0 0 0 0 0 0 0 0 

293 0 0 0 0 0 0 0 0 0 0 0 0 0 

294 0 0 0 0 0 0 0 0 0 0 0 0 0 

295 0 0 0 0 0 0 0 0 0 0 0 0 0 

296 0 0 0 0 0 0 0 0 0 0 0 0 0 
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297 0 0 0 0 0 0 0 0 0 0 0 0 0 
298 0 0 0 0 0 0 0 0 0 0 0 0 0 
299 0 0 0 0 0 0 0 0 0 0 0 0 0 
300 0 0 0 0 0 0 0 0 0 0 0 0 0 

Q-7 



APPENDIX R: 20-Term Design Centers. 

Variable    Optimal    Gradient  Quadratic 
X1 79 78 77 
X2 25 25 25 
X3 55 55 55 
X4 14 14 15 
X5 0 0 0 
X6 0 0 0 
X7 26 26 26 
X8 0 0 0 
X9 0 0 0 
X10 27 27 27 
X11 34 35 35 
X12 40 40 40 
X13 40 40 40 
X14 31 31 31 
X15 37 37 37 
X16 30 30 30 
X17 46 46 46 
X18 33 33 33 
X19 48 48 48 
X20 0 0 0 
X21 35 35 35 
X22 130 129 104 
X23 13 13 16 
X24 29 29 32 
X25 6 6 9 
X26 0 0 0 
X27 0 0 0 
X28 14 14 14 
X29 0 0 0 
X30 0 0 0 
X31 14 14 17 
X32 18 18 21 
X33 20 20 23 
X34 20 21 22 
X35 15 15 15 
X36 19 19 22 
X37 17 17 17 
X38 25 25 25 
X39 17 17 20 
X40 25 25 25 
X41 0 0 0 
X42 18 18 18 
X43 383 386 386 
X44 0 0 0 
X45 0 0 0 

R-l 



X46 0 0 0 
X47 35 35 35 
X48 43 43 43 
X49 0 0 0 
X50 19 19 19 
X51 17 17 17 
X52 0 0 0 
X53 0 0 0 
X54 0 0 0 
X55 0 0 0 
X56 0 0 0 
X57 0 0 0 
X58 0 0 0 
X59 0 0 0 
X60 0 0 0 
X61 0 0 0 
X62 29 30 29 
X63 0 0 0 

R-2 



APPENDIX S, SSN Design Center. 

Variable    Optimal Variable    Optimal 
XI 0 X46 0 
X2 0 X47 5 
X3 31 X48 10 
X4 0 X49 0 
X5 18 X50 0 
X6 3 X51 2 
X7 0 X52 22 
X8 0 X53 9 
X9 9 X54 26 
X10 0 X55 13 
XII 11 X56 4 
X12 21 X57 0 
X13 69 X58 4 
X14 0 X59 2 
X15 0 X60 7 
X16 44 X61 0 
X17 10 X62 0 
X18 0 X63 11 
X19 18 X64 24 
X20 3 X65 0 
X21 10 X66 127 
X22 5 X67 0 
X23 22 X68 0 
X24 18 X69 0 
X25 0 X70 0 
X26 0 X71 0 
X27 4 X72 0 
X28 24 X73 0 
X29 17 X74 0 
X30 36 X75 3 
X31 26 X76 1 
X32 0 X77 2 
X33 22 X78 3 
X34 83 X79 3 
X35 0 X80 0 
X36 77 X81 2 
X37 8 X82 2 
X38 0 X83 0 
X39 14 X84 0 
X40 8 X85 3 
X41 18 X86 1 
X42 0 X87 1 
X43 39 X88 3 
X44 42 X89 0 
X45 5 
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